News
Ad
Ad
Ad
Tag

cancro

Browsing

Tumore della vescica: scoperto un nuovo meccanismo molecolare; la proteina NUMB è un biomarcatore nell’evoluzione del tumore, l’interruttore per la diagnosi delle forme più aggressive

NUMB è la proteina che costituisce un biomarcatore nell’evoluzione del tumore alla vescica: la scoperta del meccanismo molecolare apre la strada a nuove strategie terapeutiche per combattere il cancro vescicale. Lo studio, condotto dal team di ricercatori dell’Istituto Europeo di Oncologia (IEO) e dell’Università degli Studi di Milano e pubblicato su Nature Communications, dimostra inoltre che i tumori vescicali superficiali e quelli profondi rappresentano stadi differenti di un unico processo patologico che evolve nel tempo, contrariamente a quanto ritenuto fino ad ora.

Milano, 4 dicembre 2024. Una nuova speranza per la diagnosi e la cura dei tumori della vescica più aggressivi nasce dalle ricerche di un gruppo di scienziati dell’Istituto Europeo di Oncologia (IEO) e dell’Università degli Studi di Milano. Lo studio sostenuto da Fondazione AIRC per la ricerca sul cancro è stato coordinato da Salvatore Pece, professore ordinario di Patologia generale e vice-direttore del Dipartimento di Oncologia ed Emato-Oncologia dell’Università Statale di Milano, Direttore del Laboratorio “Tumori Ormono-Dipendenti e Patobiologia delle Cellule Staminali” dello IEO.

I risultati hanno condotto i ricercatori a scoprire un inedito meccanismo molecolare, alla base dell’aggressività biologica e clinica dei tumori della vescica, che determina le prognosi più sfavorevoli. I dati sono appena stati pubblicati sulla prestigiosa rivista Nature Communications.

All’origine dell’intero processo sembra esserci la proteina NUMB, che è normalmente espressa nella vescica normale, ma viene perduta in oltre il 40% di tutti i tumori vescicali umani. Tale perdita causa una cascata di eventi molecolari che rendono il tumore altamente proliferativo e invasivo, consentendogli di oltrepassare gli strati superficiali della mucosa vescicale per raggiungere gli strati più profondi. Tale evento rappresenta il punto di svolta nella evoluzione clinica della malattia, determinando la progressione dei tumori vescicali superficiali, i cosiddetti non-muscolo-invasivi, verso tumori profondi, definiti muscolo-invasivi, che richiedono l’intervento di rimozione chirurgica totale della vescica. Nonostante l’operazione radicale, queste forme di malattia sono caratterizzate da un decorso clinico spesso sfavorevole.

Dunque la proteina NUMB – spiega il professor Pece – funziona come un interruttore molecolare. che, se è spento, accelera la progressione tumorale e influenza il decorso clinico della malattia. Rappresenta quindi un biomarcatore molecolare che consente di identificare i tumori superficiali a elevato rischio di progressione verso tumori muscolo-invasivi”.

La nostra scoperta ha un forte e immediato potenziale di applicazione nella pratica clinica – continua Salvatore Pece –. I criteri clinico-patologici utilizzati nella routine per predire il rischio di progressione dei tumori vescicali superficiali a tumori muscolo-invasivi sono infatti del tutto insufficienti e inadeguati a individuare i pazienti a basso rischio, che potrebbero beneficiare di trattamenti più mirati, di tipo conservativo, in protocolli di sorveglianza attiva. I pazienti ad alto rischio necessitano invece di trattamenti più aggressivi, quali la chemioterapia e l’asportazione chirurgica della vescica, che hanno purtroppo considerevoli effetti collaterali e un elevato impatto sulla qualità della vita”.

Abbiamo analizzato il profilo molecolare sia in cellule in coltura e animali di laboratorio, sia in campioni di tumori umani privi dell’espressione di NUMB – spiega il dottor Francesco Tuccidottorando di ricerca presso la Scuola Europea di Medicina Molecolare e primo autore dello studio –. Abbiamo così osservato che la perdita di NUMB attiva un complesso circuito molecolare che conduce all’attivazione di un potente oncogene, il fattore di trascrizione YAP. Quest’ultimo è alla base del potere proliferativo e invasivo delle cellule tumorali”.

Siamo andati oltre – aggiunge la dottoressa Daniela Tosoni, ricercatrice presso il Dipartimento di Oncologia ed Emato-Oncologia dell’Università di Milano e dello IEO, che ha contribuito alla supervisione dello studio –. In esperimenti di laboratorio abbiamo dimostrato che è possibile inibire la capacità proliferativa e invasiva delle cellule tumorali prive di NUMB, utilizzando farmaci in grado di colpire questo complesso circuito molecolare a diversi livelli”. “I tumori della vescica privi di NUMB – continua Daniela Tosoni – sono quindi molto aggressivi ma anche altamente vulnerabili”.

Sono infatti già disponibili alcuni farmaci molecolari impiegati in clinica per patologie differenti dal tumore vescicale, che potrebbero rapidamente essere sperimentati e adottati come trattamenti innovativi per prevenire la progressione clinica dei tumori vescicali superficiali ad alto rischio, privi della proteina NUMB.

Nel 2023, in Italia, sono stati stimati 29.700 nuovi casi di tumore della vescia (il quinto più frequente dopo quelli della mammella, colon-retto, polmone e prostata).

Al momento della diagnosi iniziale – spiega Salvatore Pece – i tumori della vescica si presentano in larga maggioranza come tumori superficiali non muscolo-invasivi, che sono generalmente caratterizzati da una buona prognosi. Solo in una percentuale ridotta si presentano invece sin dal principio come tumori profondi muscolo-invasivi, molto aggressivi e con decorso clinico meno favorevole. Per questo necessitano di chemioterapia e di intervento di cistectomia radicale. Questo ha fatto storicamente considerare i tumori superficiali e quelli profondi come due patologie differenti sin dal principio, guidate da differenti meccanismi molecolari. Tuttavia circa il 20-30% dei tumori superficiali possono evolvere in tumori muscolo-invasivi. L’esperienza clinica ci ha insegnato che i tumori muscolo-invasivi che derivano dalla progressione di tumori inizialmente superficiali rappresentano le forme più aggressive e potenzialmente letali di tumore vescicale”.

I nostri studi – continua Pece – dimostrano invece che i tumori vescicali superficiali e quelli profondi rappresentano stadi differenti di un unico processo patologico che evolve nel tempo, guidato già dal principio da specifici meccanismi molecolari che possono essere ostacolati con farmaci precisi e mirati. Diventa quindi fondamentale identificare i meccanismi biologici alla base di questa evoluzione e sviluppare nuovi marcatori molecolari per identificare i pazienti con caratteristiche specifiche di aggressività. In questo contesto, la nostra scoperta apre la strada a nuove strategie terapeutiche per combattere il cancro vescicale in una elevata percentuale di pazienti che presentano tumori privi di espressione della proteina NUMB”.

Abbiamo anche identificato – continua Salvatore Pece – una nuova firma molecolare che consentirà di identificare con accurata precisione i pazienti che potranno beneficiare di trattamenti mirati con nuovi farmaci che colpiscono in maniera specifica i meccanismi molecolari che sono attivati a seguito della perdita di NUMB”.

Questo studio sostenuto da AIRC rappresenta per noi motivo di grande soddisfazione – continua il professor Pece – non solo per la sua valenza scientifica ma anche per i risultati clinici. Rappresenta infatti uno di quei rari momenti della ricerca scientifica in cui, dopo molti anni di studio, è possibile effettuare il passaggio dalla ricerca di base all’applicazione in ambito clinico. Abbiamo ora a disposizione una nuova firma molecolare per misurare il rischio di progressione di malattia e al tempo stesso nuovi possibili bersagli di terapie più precise e mirate tramite l’uso di farmaci già disponibili nella pratica clinica”.

Questa ricerca è una ulteriore conferma della qualità dei nostri ricercatori – sottolinea il Direttore del Dipartimento di Oncologia ed Emato-Oncologia della Statale, Gianluca Vago – e dei risultati che otteniamo grazie alla stretta collaborazione, ormai ventennale, con l’Istituto Europeo di Oncologia e il sostegno, altrettanto fondamentale, di AIRC. Milano ha un potenziale unico per la ricerca nelle scienze della vita; fare rete è ancora più importante ora, come condizione necessaria per competere con le migliori realtà europee ed internazionali”.

Lo studio, che ha visto impegnati in uno sforzo comune scienziati e clinici del nostro istituto, – conclude il professor Roberto Orecchia, Direttore dello IEO di Milano – è un risultato straordinario e una ottima notizia per molti pazienti per i quali abbiamo oggi una nuova possibilità di cura. Abbiamo già brevettato la nuova firma molecolare emersa da queste ricerche e stiamo per avviare studi clinici per validarne l’utilizzo come marcatore, per identificare i pazienti ad alto rischio di progressione di malattia che potranno beneficiare nel prossimo futuro di una nuova prospettiva terapeutica con farmaci più precisi e mirati”.

Tumore vescica NUMB biomarcatore microscopio SLA molecola leucemia RNA serina idrossimetiltrasferasi serina
Foto PublicDomainPictures

Testo dall’Ufficio Stampa Direzione Comunicazione ed Eventi istituzionali Università Statale di Milano.

 

Chirurgia genica: arrivano le nanoparticelle d’oro per riparare il DNA

Il risultato frutto di I-Gene, un progetto coordinato dall’Università di Pisa che è stato premiato per l’alto contenuto innovativo dall’European Innovation Council

La chirurgia genica ha un nuovo alleato, sono le nanoparticelle d’oro grazie alle quali i principi attivi riescono ad entrare nel nucleo delle cellule e agire sul DNA eliminando le mutazioni dannose. La scoperta arriva dal progetto europeo I-Gene appena giunto a conclusione e premiato dall’European Innovation Council per il suo alto contenuto innovativo. Si tratta di un riconoscimento che la Commissione Europea concede in caso di risultati estremamente rilevanti.

“Siamo un’epoca in cui possiamo editare i genomi e questo significa che se ci sono degli errori, noi tendenzialmente li possiamo correggere, ma per trasformare tutto questo in terapie e applicazioni utili c’è un collo di bottiglia”, spiega la professoressa Vittoria Raffa del Dipartimento di Biologia dell’Università di Pisa, coordinatrice del progetto.

“I principi attivi che fanno questo editing sono infatti degli enzimi che da soli non riescono a penetrare nelle cellule, – continua Raffa – per risolvere la questione noi abbiamo inventato dei vettori che sono delle nanoparticelle d’oro. Rispetto ai vettori attualmente utilizzati che impiegano virus presentano alcuni vantaggi: non sono tossici, il che consente un loro utilizzo più ampio senza controindicazioni, e si attivano con la luce”.

Vittoria Raffa
Vittoria Raffa

La sperimentazione delle nanoparticelle d’oro è stata fatta in vitro e in vivo su embrioni di zebrafish, i casi studio hanno riguardato il COVID-19 e il melanoma, sfruttando in quest’ultimo caso proprio la fotoattivazione attraverso laser.

A livello tecnico, I-Gene ha dunque proposto un nuovo concetto di ingegneria genetica con una metodologia basata sull’attivazione laser di un nano vettore capace di innescare una rottura o scissione del DNA. La superiorità rispetto alle metodologie attuali risiede anche nell’integrazione delle funzioni temporale, spaziale e di fedeltà: l’editing avviene solo quando il laser è acceso, dove il laser è focalizzato e solo sul bersaglio. Complessivamente, questo consente il controllo dell’editing a singola cellula e fornisce un livello di sicurezza assoluto per lo sviluppo di un editing genomico efficace per applicazioni biotecnologiche e terapeutiche.

Insieme alla professoressa Vittoria Raffa hanno lavorato al progetto per l’Università di Pisa la professoressa Chiara Gabellini del dipartimento di Biologia, il professore Mauro Pistello e il dottore Michele Lai del dipartimento di Medicina Traslazionale, e il professore Francesco Fuso del dipartimento di Fisica.

Chirurgia genica nanoparticelle d’oro il team di ricerca UniPi
il team di ricerca UniPi

Testo e foto dall’Ufficio stampa dell’Università di Pisa.

Lotta ai tumori e alle malattie genetiche grazie alle nanoparticelle lipidiche
I ricercatori del NanoDelivery Lab della Sapienza hanno sviluppato una tecnologia che utilizza nanostrutture biocompatibili per trasportare grandi molecole di DNA preparando il terreno per nuove terapie geniche mirate. I risultati dello studio sono pubblicati su Nature Communications.

 

L’avvento delle nanoparticelle lipidiche ha rivoluzionato il campo della terapia genica. Utilizzate anche nello sviluppo di vaccini a base di mRNA contro il COVID-19, le nanoparticelle lipidiche hanno dimostrato un grande successo nelle applicazioni cliniche. Tuttavia, la capacità di queste particelle di incapsulare efficacemente molecole di DNA di grandi dimensioni rimane ancora un campo poco battuto.

La ricerca del NanoDelivery Lab della Sapienza Università di Roma, coordinata da Giulio Caracciolo e Daniela Pozzi, si propone di colmare questo vuoto. Nello studio pubblicato su Nature Communications, svolto in collaborazione con altri istituti italiani ed europei come l’Istituto Pasteur Italia, la Scuola Normale Superiore di Pisa e l’Università Tecnica di Graz in Austria e con il supporto del consorzio CERIC-ERIC (Central European Research Infrastructure Consortium), i ricercatori hanno ottenuto delle particelle con una morfologia unica che dimostrano una capacità di trasporto migliorata rispetto alle formulazioni tradizionali, aprendo la strada a nuove terapie geniche mirate.

La tecnologia progettata utilizza nanoparticelle lipidiche in grado di incorporare DNA di grandi dimensioni. Le particelle risultanti sono poi ulteriormente ingegnerizzate e rivestite con una corona biomolecolare fatta di DNA e proteine plasmatiche: in seguito a questa modifica, le nanoparticelle lipidiche ottenute diventano una vera e propria nano-architettura biologica capace di eludere il sistema immunitario e aumentare l’efficacia della terapia genica.

“L’approccio innovativo del nostro studio dimostra una capacità di trasporto del DNA migliorata rispetto alle formulazioni classiche, garantendo al contempo una maggiore stabilità e una ridotta risposta immunitaria. – spiega Giulio Caracciolo della Sapienza – Questo potrebbe consentire la correzione di difetti genetici e fornire strumenti per la lotta contro il cancro, rappresentando un passo importante verso terapie innovative per malattie difficili da trattare con i metodi attualmente in uso nella pratica clinica”.

Riferimenti bibliografici:

Structuring lipid nanoparticles, DNA, and protein corona into stealth bionanoarchitectures for in vivo gene delivery – Renzi, S., Digiacomo, L., Pozzi, D. et al. – Nature Communications (2024) https://doi.org/10.1038/s41467-024-53569-8

Lotta ai tumori e alle malattie genetiche grazie alle nanoparticelle lipidiche; il nuovo studio pubblicato su Nature Communications. Foto di Konstantin Kolosov

Testo dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma

Microcircuiti flessibili. L’Europa premia il progetto di frontiera SKIN2DTRONICS dell’Università di Pisa con il prestigioso ERC Synergy Grant
Il riconoscimento a Gianluca Fiori per il progetto SKIN2DTRONICS. Per il professore del Dipartimento di Ingegneria dell’Informazione è il secondo ERC.

Il progetto SKIN2DTRONICS vince l'ERC Synergy Grant 2024 microcircuiti flessibili tumore al cervello tumori recrudescenza glioblastoma

Gianluca Fiori, docente di Ingegneria Elettronica all’Università di Pisa, è uno dei vincitori del bando ERC Synergy Grant di quest’anno.

Gli ERC sono i finanziamenti europei alla ricerca in assoluto più competitivi, e sono riconosciuti a un piccolo numero di progetti sulla sola base dell’eccellenza scientifica.

Per il 2024 sono stati riconosciuti 56 grant a fronte di 548 progetti presentati, a testimonianza dell’altissima selettività del finanziamento.

Il progetto di Gianluca Fiori si chiama SKIN2DTRONICS, e sarà finanziato con dieci milioni di euro nei prossimi sei anni per sviluppare una tecnologia all’avanguardia che permetta la costruzione di microcircuiti elettronici su materiali deformabili e ultra flessibili. Per il professore è il secondo ERC, dopo quello ottenuto nel 2017 per le sue ricerche sull’elettronica stampabile su carta.

“L’idea alla base di SKIN2DTRONICS – racconta Gianluca Fiori – è che l’elettronica può essere integrata, letteralmente, ovunque. Puntiamo a sviluppare elettronica flessibile spessa meno di un micron, e collocabile su ogni tipo di superficie, indipendentemente da forma, irregolarità e consistenza. Questo può aprire  la strada a una grandissima gamma di applicazioni, incluso  l’ambito medico.
Nello specifico, ci occuperemo dello sviluppo di un dispositivo elettronico flessibile e biocompatibile in grado di monitorare la recrudescenza di tumori molto aggressivi come il glioblastoma, un tumore al cervello che attualmente ha un’altissima percentuale di mortalità, perché i monitoraggi periodici per stabilire la recrudescenza sono molto dilazionati nel tempo, dovendo utilizzare una tecnica molto costosa come la  risonanza magnetica.
Il dispositivo elettronico che metteremo a punto potrà essere inserito direttamente nella cavità lasciata nel cervello dopo la rimozione chirurgica del tumore, e, grazie alla sua flessibilità e adattabilità, potrà aderire perfettamente ai bordi della cavità. Il dispositivo conterrà microsensori di pH, temperatura e pressione in grado di monitorare l’eventuale insorgenza di nuovi tumori in tempo reale.”
“Il progetto – conclude Fiori – è decisamente ambizioso, dovendo affrontare una doppia sfida: riuscire a integrare in pochi centimetri quadri  migliaia di transistori necessari per elaborare i segnali, analizzare i dati e comunicarli all’esterno, e progettare l’elettronica in modo che le sue prestazioni restino stabili anche su superfici curve e irregolari.”
Gianluca Fiori
Gianluca Fiori

II Synergy Grant premia progetti così innovativi e ambiziosi da richiedere, per avere successo, la stretta collaborazione e l’integrazione delle conoscenza di un gruppo di scienziati. Oltre a Gianluca Fiori, il team di SKIN2DTRONICS è composto da Andreas Kis, EPFL Losanna (Scuola Politecnica Federale), Andres Castellano Gomez, CSIC Madrid (Consiglio Superiore per la Ricerca Scientifica) e Kostas Kostarelos, ICN2 Barcellona (Istituto Catalano di Nanoscienza e Nanotecnologia).

“Un riconoscimento come questo – commenta il direttore del Dipartimento di Ingegneria dell’Informazione Sergio Saponara – testimonia l’eccellenza della ricerca all’interno del nostro dipartimento, e il suo grande impatto sulla società e sul sistema produttivo. Da molti anni i nostri ricercatori sono al lavoro per sviluppare tecnologie per una società sempre più digitale. Tutta l’attività del Dipartimento dedicata al futuro si svolge all’interno del nostro laboratorio FoReLab, in cui una ricerca altamente integrata e interdisciplinare punta a fornire gli strumenti per una società e una industria 5.0, in cui dispositivi e tecnologia sono pensati e ritagliati sui bisogni delle persone. Grazie al finanziamento dell’ERC Synergy Grant potremo mettere a punto una generazione di nuovi dispositivi, in pratica una nuova industria dell’elettronica, con applicazioni centrate sui pazienti, come dispositivi wearable e applicazioni medicali”.

 

Testo e immagini dall’Ufficio Stampa dell’Università di Pisa

Progetto CO-TRANS-NET: farmaci sintetici personalizzati a base di RNA, giovane ricercatrice vince l’ERC Starting Grant

Sempre più vicina la possibilità di creare farmaci su misura del paziente oncologico e della sua malattia e garantire diagnosi ad personam, anche via smartphone

Progetto CO-TRANS-NET farmaci molecola RNA funzionale - crediti per l'immagine: Marco Tripodi, Università Roma Tor Vergata
molecola RNA funzionale – crediti per l’immagine: Marco Tripodi, Università Roma Tor Vergata

Roma, 5 settembre 2024 – Simona Ranallo, 37 anni, romana, attualmente ricercatrice presso il dipartimento di Scienze e tecnologie chimiche dell’Università di Roma Tor Vergata, si aggiudica – unica vincitrice Starting Grant nell’Ateneo – l’ERC Starting Grant 2024, il finanziamento di 1.5 milioni di euro che l’Europa elargisce alle migliori linee di ricerca ogni anno, per il progetto CO-TRANS-NET “Synthetic nucleic acid co-transcriptional networks as diagnostic and therapeutic tools”.

I suoi studi per la ricerca sul cancro l’hanno portata a interessarsi delle interazioni molecolari che avvengono all’interno della cellula e nel corpo umano.

“Ciò che maggiormente ha stimolato la mia curiosità – spiega Simona Ranallo – è sempre stato cercare di migliorare la diagnosi e il trattamento di diverse malattie, incluso il cancro, partendo dallo studio di come funziona la vita. Attraverso processi altamente controllati la cellula è in grado di leggere l’informazione contenuta nel nostro DNA e tradurla in molecole funzionali, quali RNA e proteine, che giocano ruoli chiave nella regolazione delle funzioni vitali e della salute”.

“Ed è proprio da questo concetto – sottolinea la ricercatrice – che nasce l’idea di CO-TRANS-NET (acronimo di Cotranscriptional networks): sviluppare sistemi basati su geni sintetici che, in risposta a specifici biomarcatori tumorali, sono in grado di produrre molecole di RNA funzionali che possono generare un segnale diagnostico o avere funzioni terapeutiche. In questo modo CO-TRANS-NET si pone l’obiettivo di generare una nuova classe di strumenti teranostici, che attraverso l’utilizzo delle nanotecnologie, integrano la diagnosi e la terapia in modo tale che possano essere ottenute simultaneamente”.

L’innovazione del progetto CO-TRANS-NET risiede quindi in una importante scoperta.

“La possibilità di produrre un farmaco a base di RNA in risposta alla presenza di specifici biomarcatori tumorali rappresenta la vera innovazione di CO-TRANS-NET. In questo modo si potrebbe pensare di produrre un farmaco “on demand” quando il livello di un biomarcatore supera il suo specifico range fisiologico, diventando quindi una sorta di allarme e rappresentando una possibilità di trattamento precoce. Si riuscirebbe così ad amministrare la dose di farmaco da somministrare in base alla necessità specifica di ogni singolo paziente, correlata allo stadio della sua malattia”.

La dottoressa Ranallo sottolinea anche le caratteristiche peculiari e la versatilità del progetto:

“CO-TRANS-NET oltre a garantire un monitoraggio costante e un trattamento terapeutico personalizzato rappresenta un innovativo strumento diagnostico in cui in tempi rapidi e senza necessità di apparecchiature di laboratorio ma utilizzando solamente uno smartphone si potrà misurare il livello di biomarcatori tumorali nel sangue dei pazienti con elevata precisione, proprio come il glucometro utilizzato dai pazienti diabetici. Le innovazioni proposte da CO-TRANS-NET in campo diagnostico e terapeutico rappresentano importanti progressi verso la medicina personalizzata e di precisione”.

Il progetto CO-TRANS-NET ha una durata di cinque anni e rientra nel 44% di Starting Grant 2024 vinti da ricercatrici, percentuale in costante aumento negli ultimi anni secondo quanto rivela lo European Research Council. Lo ERC Starting Grant, che per l’anno in corso ha potuto contare su un finanziamento di circa 780 milioni di euro complessivi, supporta giovani ricercatori e ricercatrici all’inizio della loro carriera nelle loro ricerche all’avanguardia.

Simona Ranallo
Simona Ranallo

Biografia

Simona Ranallo si laurea in chimica all’università di Roma Tor Vergata e qui ottiene il dottorato in Scienze chimiche portando avanti la sua ricerca nel Laboratorio di Chimica analitica del dipartimento di Scienze e tecnologie chimiche. Durante il PhD è stata Visiting Researcher presso la University of California Santa Barbara e l’Université de Montréal.

Ha ottenuto finanziamenti post doc dalla Fondazione Umberto Veronesi per continuare la sua ricerca sul cancro e nel 2018 è risultata vincitrice di una Marie Skłodowska-Curie Post Doctoral Global Fellowship, finanziata dalla Comunità Europea. Grazie a questo finanziamento ha svolto due anni di ricerca presso la University of California Santa Barbara per poi tornare nell’ultimo anno di ricerca del finanziamento presso il dipartimento di Scienze e tecnologie chimiche di Roma Tor Vergata, dove attualmente lavora come ricercatrice nel gruppo di ricerca coordinato dal professor Francesco Ricci.

Testo e immagini dall’Ufficio stampa Università di Roma Tor Vergata

Individuato un nuovo meccanismo molecolare alla base della leucemia linfoblastica acuta, una leucemia infantile ad alta incidenza: l’interazione tra proteine recettoriali mediata da microRNA porta a compromettere funzioni immunitarie del timo

Una ricerca internazionale coordinata dalla Sapienza ha reso possibile importanti avanzamenti nella comprensione dei processi alla base dello sviluppo della leucemia linfoblastica acuta: un’interazione tra proteine recettoriali mediata da microRNA conduce alla compromissione delle funzioni immunitarie della ghiandola del timo. Questa scoperta potrebbe portare in futuro a nuove tecniche di monitoraggio e a nuove terapie.

La leucemia linfoblastica acuta (LLA) è un tumore ematologico aggressivo a rapida evoluzione che colpisce i linfociti T arrestandoli in una fase immatura. Tra le leucemie acute infantili, circa il 60% è rappresentato dalla LLA. Anomalie genetiche bloccano la differenziazione dei precursori delle cellule T nel timo, una ghiandola situata nel mediastino, davanti al cuore, e favoriscono una proliferazione cellulare anomala. Le cellule leucemiche in accumulo infiltrano poi il midollo osseo provocando la malattia.

Nel 60% dei pazienti con LLA-T si riscontrano mutazioni che portano ad un’iperattività del sistema di segnalazione Notch. La chemioterapia intensiva può curare molti dei pazienti, ma un’alta percentuale dei soggetti pediatrici e soprattutto adulti è poi soggetta a ricadute con prognosi sfavorevole. I recettori Notch possono infatti contribuire alla resistenza alla chemioterapia, rendendo necessaria la ricerca di nuovi approcci per contrastare il suo apporto alla progressione della LLA-T.

Un nuovo studio, condotto dal Dipartimento di Medicina Sperimentale della Sapienza in collaborazione con il Dipartimento di Medicina Molecolare, e frutto di una rete di collaborazioni con altri enti di ricerca, offre importanti avanzamenti per la comprensione del meccanismo tumorale. I risultati della ricerca, di recentissima pubblicazione sulla rivista Oncogene, hanno dimostrato come la proteina Notch moduli i meccanismi epigenetici di regolazione del recettore CXCR4 attraverso l’interazione con particolari microRNA. In questo modo contribuisce al blocco dello sviluppo e della differenziazione delle cellule T e sovverte completamente le funzioni del timo inducendone una precoce involuzione.

Il risultato è stato ottenuto attraverso un modello transgenico per il gene Notch3, che ha permesso di verificare molte delle caratteristiche molecolari e cellulari della LLA T, e grazie all’impiego di molteplici tecniche avanzate di citofluorimetria e di analisi molecolare. I dati epigenetici sono stati confermati mediante l’utilizzo di modelli di xenotrapianto ottenuti utilizzando campioni di pazienti affetti da LLA T trapiantati in modelli sperimentali murini.

“Il lavoro conta, non solo fra i primi nomi, nostri giovani ricercatori in Italia ed all’estero, che con professionalità hanno condotto esperimenti complessi e fondamentali per questo studio, dimostrando passione ed entusiasmo per la ricerca scientifica. La specifica competenza fornita da ogni singolo autore e dai vari centri di ricerca coinvolti ha permesso la realizzazione di questo progetto”, precisa Maria Pia Felli, autrice dell’articolo.

In particolare oltre alla Sapienza hanno partecipato la Weill Cornell Medicine di New York, l’Istituto Italiano di Tecnologia (IIT) di Roma, l’Azienda Ospedaliera dei Colli Monaldi di Napoli, l’Università di Roma Tor Vergata, l’Istituto Nazionale Tumori Regina Elena di Roma, l’Università di Padova e quella di Perugia.

I risultati ottenuti avanzano la conoscenza scientifica su questo tipo di tumore e suggeriscono questi microRNA come nuovi addizionali biomarker molecolari per il monitoraggio e, nel futuro, per avanzate strategie terapeutiche contro questa patologia.

Riferimenti bibliografici:

Notch3-regulated microRNAs impair CXCR4-dependent maturation of thymocytes allowing maintenance and progression of T-ALL – Ilaria Sergio, Claudia Varricchio, Sandesh Kumar Patel, Martina Del Gaizo, Eleonora Russo, Andrea Orlando, Giovanna Peruzzi, Francesca Ferrandino, Georgia Tsaouli, Sonia Coni, Daniele Peluso, Zein Mersini Besharat, Federica Campolo, Mary Anna Venneri, Donatella Del Bufalo, Silvia Lai, Stefano Indraccolo, Sonia Minuzzo, Roberta La Starza, Giovanni Bernardini, Isabella Screpanti, Antonio Francesco Campese, e Maria Pia Felli

Oncogene – DOI: 10.1038/s41388-024-03079-0

microscopio Progeria trattamento leucemia acuta linfoblastica Philadelphia-positiva
. Foto di Konstantin Kolosov

 

Testo dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma

Terapie a RNA: fotografata l’interazione tra RNA e serina idrossimetiltrasferasi, una proteina metabolica coinvolta nella crescita dei tumori

In uno studio internazionale, coordinato dal Dipartimento di Scienze biochimiche A. Rossi Fanelli della Sapienza Università di Roma, è stata utilizzata una tecnica all’avanguardia per cogliere i dettagli del meccanismo di inibizione di una proteina metabolica da parte dell’RNA. I risultati della ricerca sostenuta da Fondazione AIRC per la Ricerca sul Cancro sono stati pubblicati sulla rivista Molecular Cell. Se i dati saranno confermati in ulteriori studi, potranno offrire nuove speranze di applicazione delle terapie a RNA nella lotta contro il cancro.

Le cellule tumorali sono in grado di rielaborare le proprie funzioni in modo da crescere più velocemente e sopravvivere a condizioni avverse, aumentando per esempio la produzione di specifiche proteine. La ricerca potrebbe fornire strumenti per interferire con questi processi tramite terapie a base di RNA. Queste ultime infatti potrebbero a breve rivoluzionare la medicina, grazie alla loro capacità di influenzare direttamente l’espressione genica e di conseguenza la produzione di proteine all’interno delle cellule.

Il gruppo di ricerca guidato da Francesca Cutruzzolà della Sapienza Università di Roma ha chiarito i dettagli di un nuovo meccanismo per bloccare selettivamente l’attività della serina idrossimetiltrasferasi (SHMT), una proteina che ha un ruolo chiave nella crescita tumorale, utilizzando l’RNA come molecola inibitoria. La ricerca è avvenuta in collaborazione con il Dipartimento di Chimica e Tecnologie del farmaco della Sapienza, l’IBPM-CNR, le università di Milano e di Pavia e altre istituzioni nazionali e internazionali.

Grazie alla microscopia crioelettronica, una tecnica all’avanguardia che permette di osservare le molecole allo stato nativo con una risoluzione senza precedenti, i ricercatori hanno potuto osservare l’interazione tra SHMT1 e RNA a livello atomico. Ciò ha consentito di comprendere dettagliatamente il meccanismo di inibizione dell’enzima.

“Questa tecnica permette di scattare una fotografia di un oggetto oltre mille volte più piccolo di una singola cellula”, commentano Sharon Spizzichino e Federica Di Fonzo del gruppo di ricerca della Sapienza.

“La fotografia a livello atomico dell’interazione tra RNA e proteine metaboliche – spiega Francesca Cutruzzolà, coordinatrice dello studio – rappresenta un importante traguardo nella ricerca biomedica, aprendo la strada a nuove frontiere nel trattamento delle malattie attraverso terapie innovative basate sull’RNA”.

I risultati ottenuti aprono la strada a una comprensione più profonda dei meccanismi molecolari alla base delle terapie a RNA, fondamentale per lo sviluppo di trattamenti più efficaci e meno invasivi per numerose condizioni patologiche. La ricerca è stata sostenuta da AIRC, e da altri fondi quali quelli del Piano nazionale ripresa resilienza (PNRR) assegnati al progetto dal titolo “National Center for Gene Therapy and Drugs based on RNA Technology.

 

Riferimenti bibliografici:

Structure-based mechanism of riboregulation of the metabolic enzyme SHMT1 – S. Spizzichino, F. Di Fonzo, C. Marabelli et al., Mol. Cell. – DOI:https://doi.org/10.1016/j.molcel.2024.06.016

 

microscopio cellule invecchiamento
Foto PublicDomainPictures

Testo dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma

Scoperto il legame tra la carenza di vitamina B6 e l’insorgenza di tumori maligni

Una ricerca coordinata dalla Sapienza e dalla Fondazione Santa Lucia ha dimostrato che la mancanza della vitamina B6 è in grado di trasformare i tumori benigni in forme più aggressive. La comprensione di questo fenomeno, descritto in un articolo pubblicato su Cell Death & Disease e indagato sperimentalmente sul moscerino della frutta è utile per chiarire i legami presenti tra carenza di micronutrienti e comparsa di tumori.

La carenza di vitamina B6 è correlata all’insorgenza di tumori maligni secondo una nuova ricerca dei Dipartimenti di Biologia e Biotecnologie Charles Darwin e di Scienze Biochimiche Alessandro Rossi Fanelli della Sapienza e del Laboratorio di Neurobiologia Cellulare della Fondazione Santa Lucia di Roma. Lo studio, i cui risultati sono pubblicati sulla rivista Cell Death & Disease, ha chiarito i meccanismi alla base di questo legame effettuando per la prima volta esperimenti in vivo su esemplari di Drosophila melanogaster, il comune moscerino della frutta. In particolare, questa ricerca ha dimostrato che la deficienza della vitamina B6 è in grado di trasformare tumori benigni che esprimono l’oncogene RasV12 (un gene legato alla formazione di neoplasie) in forme più aggressive che producono metastasi.

La vitamina B6 è un composto idrosolubile e dalle proprietà antiossidanti, che rende possibile l’attività di enzimi coinvolti nel 4% delle reazioni metaboliche. Per questo motivo, all’interno del delicato equilibrio cellulare, la carenza di vitamina B6 determina, fra le altre cose, danno al DNA e aberrazioni cromosomiche. I ricercatori hanno dimostrato per la prima volta in vivo la correlazione tra la deficienza della vitamina B6, il danno genomico e lo stress ossidativo nelle cellule tumorali.

Per arrivare a tale risultato, gli studiosi hanno utilizzato la Drosophila melanogaster. Attraverso opportuni incroci genetici, gli scienziati hanno ottenuto larve di Drosophila che esprimessero contemporaneamente l’oncogene Ras, che provoca tumori benigni, e una proteina fluorescente verde in modo da poter seguire agevolmente le masse tumorali e le eventuali metastasi generatesi dal tumore primario. Tali larve, trattate con uno specifico inibitore della vitamina B6 per ridurne la concentrazione, sono state poi esaminate per valutare gli effetti di tale deficienza sul fenotipo tumorale.

Oltre agli innumerevoli vantaggi legati all’utilizzo del moscerino della frutta come modello sperimentale per studi di natura genetica, l’utilizzo di Drosophila come organismo modello per lo studio del metabolismo e del suo impatto sul cancro: risulta oltremodo vantaggioso poiché l’insetto possiede la maggioranza delle vie metaboliche che negli esseri umani risultano alla base dei tumori. Pertanto, questo modello di indagine sperimentale potrà essere usato in futuro per studiare l’impatto della carenza di altri micronutrienti nei processi di formazione e metastatizzazione dei tumori.

Nonostante la condizione di carenza primaria di vitamina B6 nei paesi sviluppati sia rara dal momento che questa è presente nella maggior parte degli alimenti, carenze secondarie derivanti da farmaci, abuso di alcool o patologie come diabete e sindromi di malassorbimento sono frequenti. Pertanto, applicati all’uomo, questi risultati suggeriscono l’importanza di valutare l’integrità del genoma come biomarcatore predittivo in tutti quei contesti in cui la vitamina B6 è ridotta. Inoltre l’impatto della dieta sui tumori è un argomento di interesse generale che va divulgato anche per promuovere la prevenzione.

Foto di MasterTux

Riferimenti bibliografici:

Vitamin B6 deficiency cooperates with oncogenic Ras to induce malignant tumors in Drosophila – E. Pilesi, G. Tesoriere, A. Ferriero et al.

Cell Death & Disease – DOI: /10.1038/s41419-024-06787-3

DNA danneggiato tumori maligni

Testo dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma

Il ruolo cruciale delle vaccinazioni contro il virus dell’epatite B (HBV) e il papilloma virus (HPV) nella popolazione carceraria come strategia per promuovere l’equità sanitaria e prevenire il cancro.

Studio Università di Pisa pubblicato su The Lancet Regional Health evidenzia il ruolo cruciale delle vaccinazioni contro epatite B e papilloma nella popolazione carceraria.

Il Dipartimento di Ricerca Traslazionale e Nuove Tecnologie in Medicina e Chirurgia dell’Università di Pisa, in collaborazione con diversi partner internazionali, ha guidato uno studio appena pubblicato sulla prestigiosa rivista The Lancet Regional Health – Europe. Nel lavoro dal titolo “Cancer-preventing vaccination programs in prison: promoting health equity in Europe”, la dottoressa Lara Tavoschi e gli altri coautori e coautrici evidenziano il ruolo cruciale delle vaccinazioni contro il virus dell’epatite B (HBV) e il papilloma virus (HPV) nella popolazione carceraria come strategia per promuovere l’equità sanitaria e prevenire il cancro.

La ricerca ha coinvolto 20 paesi europei, valutando i dati sui servizi di vaccinazione e le politiche sanitarie rispetto alle persone che vivono e che lavorano in carcere. Per quanto riguarda l’Italia, sono rientrati nello studio quattro istituti penitenziari: la casa circondariale di Milano San Vittore, l’istituto penale per i minorenni di Milano “Beccaria”, il carcere di Bollate, e la casa di reclusione di Opera per un totale di persone recluse coinvolte di circa 3600 persone (a fronte di una capacità ospitativa inferiore ai 3000 posti). Dall’analisi è emersa una notevole variabilità a livello europeo nella disponibilità e nella copertura dei servizi vaccinali. In Italia la vaccinazione contro il virus dell’epatite viene offerta mentre non sono disponibili dati specifici sulla realizzazione o i benefici della vaccinazione contro il papilloma virus.

Dal lavoro emergono dieci raccomandazioni chiave per migliorare le strategie vaccinali contro il cancro nell’ambito carcerario. Si va dalla richiesta di inclusione esplicita delle popolazioni carcerarie nelle strategie di vaccinazione nazionali e internazionali, enfatizzando il principio di “equivalenza delle cure” come dichiarato da The Nelson Mandela Rules, alla necessità di espansione dei programmi di vaccinazione contro HBV e HPV rivolti a tutte le persone incarcerate che ne possono beneficiare, in particolare adolescenti e giovani adulti, utilizzando approcci neutri rispetto al genere.

“Le vaccinazioni – dice Lara Tavoschi – dovrebbero far parte di un pacchetto più ampio di servizi di salute sessuale e riduzione del danno, compreso lo screening per altre infezioni sessualmente trasmissibili e garantendo il follow-up delle cure post-rilascio”.

“Questa ricerca – conclude Tavoschi – fornisce prove solide a sostegno dell’implementazione di programmi di vaccinazione che non lascino indietro nessuno, a beneficio dell’intera popolazione. Affrontando le specifiche esigenze sanitarie delle persone che vivono in carcere, questi programmi possono infatti contribuire in modo significativo alla prevenzione del cancro e al miglioramento complessivo della salute pubblica in Europa”.

Lo studio è stato sviluppato come parte del progetto RISE-Vac, co-finanziato dal 3° Programma per la Salute dell’Unione Europea nell’ambito del GA n° 101018353. Gli autori estendono la loro gratitudine a Europris e ai membri del consorzio RISE-Vac per i loro preziosi contributi.

Link all’articolo scientifico:

https://www.sciencedirect.com/science/article/pii/S266677622400125X

Foto di Joseph Fulgham

Testo dal Polo Comunicazione CIDIC – Centro per l’innovazione e la diffusione della cultura dell’Università di Pisa.

SLA: nuove prospettive terapeutiche da una molecola attualmente impiegata nella sperimentazione clinica contro la leucemia

Un nuovo studio coordinato dalla Sapienza e dall’Istituto Italiano di Tecnologia di Roma e pubblicato su Nature Communications ha individuato in un farmaco impiegato in terapie sperimentali contro il cancro un possibile approccio terapeutico per il trattamento della Sclerosi Laterale Amiotrofica (SLA).

La Sclerosi Laterale Amiotrofica (SLA) è una malattia neurodegenerativa causata dalla progressiva perdita di motoneuroni, le cellule predisposte al controllo dei movimenti volontari dei muscoli.  A oggi non esiste una cura efficace per questa rara patologia.

In un recente studio coordinato dalla Sapienza Università di Roma e dall’Istituto Italiano di Tecnologia (IIT) di Roma, pubblicato sulla rivista Nature Communications e finanziato da un progetto ERC-Synergy, è stato scoperto che un farmaco già impiegato in terapie sperimentali contro il cancro potrebbe avere effetti benefici anche sulla SLA, aprendo nuove importanti prospettive terapeutiche.

I ricercatori, coordinati da Irene Bozzoni del Dipartimento di Biologia e Biotecnologie Charles Darwin della Sapienza e del centro CLNS2 di IIT di Roma, sono partiti dallo studio di specifiche condizioni che determinano la formazione nelle cellule di strutture chiamate granuli da stress. La funzione di tali strutture è quella di proteggere temporaneamente le molecole di RNA e di proteine fino alla risoluzione dello stato di stress. Circa il 10% dei casi totali di SLA sono causati da mutazioni in proteine che in molti casi sono componenti dei granuli da stress. Queste alterazioni provocano la produzione di proteine aberranti che trasformano i granuli in aggregati tossici per i motoneuroni. In particolare nella SLA, così come in altre malattie neurodegenerative, ciò che risulta alterato sono il numero, la composizione e le dinamiche di formazione e dissociazione di questi granuli.

Il gruppo di ricercatori ha scoperto che una specifica modifica chimica dell’RNA, nota come N6-metiladenosina (m6A), ha un ruolo cruciale nell’alterazione delle dinamiche di formazione e dissociazione dei granuli in forme particolarmente aggressive di SLA: la malattia è caratterizzata da livelli di m6A aumentati e il loro ripristino a livelli fisiologici è in grado di ristabilire le normali proprietà dei granuli da stress.

“Siamo riusciti a diminuire i livelli di m6A utilizzando una molecola (STM2457) attualmente impiegata nella sperimentazione clinica per la cura di tumori leucemici – spiega Irene Bozzoni – Questa scoperta apre alla possibilità di utilizzarla anche come nuovo approccio terapeutico per il trattamento della SLA”.

I risultati dello studio rappresentano un prezioso contributo per la comprensione dei meccanismi cellulari alla base della patologia e, soprattutto, individuano nelle modifiche dell’RNA promettenti target terapeutici per contrastare la SLA.

Riferimenti bibliografici:

M6A reduction relieves FUS-associated ALS granules – Di Timoteo et al.

Nature Communications – DOI: 10.1038/s41467-024-49416-5

microscopio cellule invecchiamento
Sclerosi Laterale Amiotrofica – SLA: nuove prospettive terapeutiche da una molecola attualmente impiegata nella sperimentazione clinica contro la leucemia. Foto PublicDomainPictures

Testo e immagini dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma