News
Ad
Ad
Ad
Tag

buchi neri

Browsing

IXPE RIVELA NUOVI INDIZI SUI MECCANISMI ALLA BASE DELLA LUMINOSITÀ DEI BLAZAR

A poco meno di un anno dal suo lancio, la missione Imaging X-Ray Polarimetry Explorer (IXPE), frutto della collaborazione tra NASA e Agenzia Spaziale Italiana, continua a fornire nuovi fondamentali contributi per la comprensione delle caratteristiche delle più esotiche sorgenti astrofisiche. Grazie ai dati raccolti dai suoi tre telescopi, che si avvalgono di particolari rivelatori per lo studio della polarizzazione della luce nella banda X sviluppati e realizzati dall’Istituto Nazionale di Fisica Nucleare – INFN e dall’Istituto Nazionale di Astrofisica – INAF, IXPE ha infatti consentito di appurare che dietro l’accelerazione – a velocità prossime a quelle della luce – delle particelle di cui sono composti i poderosi getti emessi dai blazar, oggetti appartenenti alla famiglia dei nuclei galattici attivi tra i più luminosi del cielo, potrebbero celarsi delle potenti onde d’urto. A rivelarlo, uno studio pubblicato oggi, 23 novembre, sul sito web della rivista Nature dal team internazionale di scienziati della collaborazione IXPE, di cui fanno parte ricercatrici e ricercatori di ASI, INFN, INAF e delle università di Siena, Torino, Pisa, Firenze, Roma Tre, Roma Tor Vergata e Padova, che ha preso in esame i dati relativi a Markarian 501, un blazar situato in direzione della costellazione di Ercole, confrontandoli con quelli ottenuti in altre lunghezze d’onda da alcuni telescopi da Terra e dallo spazio.

IXPE blazar
Schema dell’osservazione del blazar Markarian 501 da parte del satellite IXPE. Nel circolo sono evidenziate le particelle di alta energia presenti nel getto (in blu). Quando le particelle si scontrano con l’onda d’urto, indicata dalla barra bianca, acquistano energia ed emettono raggi X. Allontanandosi dalla zona d’impatto, emettono radiazione di energia più bassa: dapprima luce visibile, poi infrarossa e infine onde radio. A grande distanza dall’onda d’urto le linee del campo magnetico sono più aggrovigliate, provocando una maggiore turbolenza nel fascio di particelle. Crediti:Pablo Garcia (NASA/MSFC)

Costituiti da buchi neri supermassicci molto attivi di milioni o forse miliardi di masse solari, che attraggono continuamente nella loro orbita il materiale responsabile della formazione dei cosiddetti dischi di accrescimento, i blazar sono caratterizzati dall’emissione di due potenti getti di particelle, perpendicolari ai dischi stessi, uno dei quali indirizzato verso la Terra, rendendoli così particolarmente luminosi. Studiando nel dettaglio la polarizzazione della luce nella banda X proveniente da Markarian 501, ovvero la direzione in cui oscilla il campo elettrico a essa associato, IXPE ha consentito di mappare il campo magnetico all’interno del quale le particelle vengono accelerate emettendo fotoni, e di comprendere per la prima volta che la causa più probabile della loro energia così elevata è attribuibile al propagarsi di un’onda d’urto all’interno del getto.

“Abbiamo risolto un mistero che dura da 40 anni”, ha dichiarato Yannis Liodakis, autore principale dello studio e astronomo presso il FINCA, il centro astronomico finlandese dell’ESO. “Finalmente abbiamo completato il puzzle e il quadro che ne emerge è piuttosto chiaro”.

Le osservazioni effettuate da IXPE nel marzo 2022, insieme a quelle condotte nello stesso periodo in direzione dello stesso oggetto da altri telescopi, hanno quindi consentito di studiare la radiazione emessa in un’ampia gamma di lunghezze d’onda, tra cui quella radio, ottica e, per la prima volta, X, e di dimostrare come proprio la radiazione X emessa dal blazar fosse più polarizzata di quella ottica, che a sua volta è risultata più polarizzata di quella radio.

Dopo aver confrontato le informazioni con i modelli teorici, il team di astronomi si è reso conto che i dati corrispondevano maggiormente a uno scenario in cui un’onda d’urto accelera le particelle del getto. Un’onda d’urto si genera quando qualcosa si muove più velocemente della velocità del suono del materiale circostante, come quando un jet supersonico vola nell’atmosfera terrestre.

Le discrepanze riscontrante nel grado di polarizzazione della luce alle diverse frequenze possono perciò essere spiegate supponendo che, una volta superato il luogo di origine dell’onda d’urto, le particelle che compongono il getto dei blazar attraversino regioni caratterizzate da campi magnetici turbolenti, in maniera analoga a ciò che accade a un flusso d’acqua dopo aver superato una cascata. La turbolenza ha infatti l’effetto di ridurre la polarizzazione della luce. La radiazione X risulterebbe perciò più polarizzata poiché viene emessa da particelle più energetiche, appena accelerate nella zona dell’onda d’urto, al contrario della luce emessa nella banda ottica e in quella radio.

“Le prime misure di polarizzazione nei raggi X di questa classe di sorgenti hanno consentito, per la prima volta, un confronto diretto con i modelli elaborati nell’ambito del complesso quadro evidenziato dalle osservazioni multifrequenza, dalla banda radio fino alle altissime energie. Nuove evidenze verranno fornite da IXPE grazie all’analisi dei dati in corso e di quelli da acquisire in futuro”, commenta Immacolata Donnarummaproject scientist di IXPE per l’Agenzia Spaziale Italiana.

“IXPE è stato progettato per funzionare in una banda di energia, ‘i raggi X molli’, che permette, tra l’altro, di sondare la fisica di diverse classi di Blazar. Nel caso di Mrk 501 abbiamo potuto sondarne una in cui i raggi X sono emessi da elettroni che si muovono a velocità molto prossime a quelle della luce intorno al campo magnetico. Altri Blazar di diversa tipologia verranno studiati durante la prossima fase osservativa della missione”, osserva Paolo Soffitta, ricercatore INAF e principal investigator italiano di IXPE.

“Grazie ad un rivelatore innovativo, il Gas Pixel Detector, interamente sviluppato e realizzato in Italia, IXPE ha permesso finalmente di aggiungere uno dei tasselli mancanti alla comprensione dell’Universo ad alta energia, e questo studio dimostra appieno il potenziale scientifico di questa nuova finestra osservativa”, conclude Luca Baldini, dell’INFN di Pisa e co-principal investigator  italiano di IXPE.

Ulteriori campagne di osservazione si concentreranno nel prossimo futuro su Markarian 501, allo scopo di comprendere se il grado polarizzazione vari nel tempo. Indagini che vedranno impegnato anche IXPE, che durante i prossimi due anni, IXPE studierà inoltre altre sorgenti simili, fornendo un nuovo strumento capace di esplorare sempre più da vicino le proprietà delle regioni di spazio che ospitano sorgenti astrofiche esotiche quali buchi neri, stelle di neutroni e resti di supernovae.

 

Testo e immagine dall’Ufficio stampa – Struttura per la Comunicazione di Presidenza Istituto Nazionale di Astrofisica (INAF)

GW190521: SCOPERTO UN SEGNALE GRAVITAZIONALE ANOMALO GENERATO DALLA FUSIONE “ISTANTANEA” DI DUE BUCHI NERI

Il risultato potrebbe fornire un nuovo strumento per l’interpretazione dei segnali gravitazionali, aumentando la comprensione delle configurazioni che caratterizzano i sistemi binari di buchi neri

Il 21 maggio 2019 i due interferometri LIGO, negli USA, e Virgo, in Italia, hanno rivelato un segnale gravitazionale straordinariamente intenso, ma estremamente breve. Una sorta di potentissimo gong cosmico, chiamato GW190521, dalla data della sua rivelazione. L’onda gravitazionale era stata generata dalla fusione di due buchi neri a miliardi di anni luce di distanza dalla Terra e, in seguito a quel fragoroso scontro, è stato prodotto un buco nero di oltre 150 masse solari, il buco nero più massiccio osservato fino ad oggi da LIGO e Virgo.

GW190521: scoperto segnale gravitazionale anomalo generato dalla fusione “istantanea” di due buchi neri

GW190521 è stata un’osservazione eccezionale e per molti versi enigmatica, che ha stimolato gli astrofisici a immaginare possibili scenari cosmici che spieghino il meccanismo di formazione della coppia binaria e le caratteristiche della sua violenta fusione. Giovedì 17 novembre, un gruppo di ricerca composto da scienziati della sezione di Torino dell’Istituto Nazionale di Fisica Nucleare, insieme ai colleghi dell’Università di Torino e dell’Università Friedrich Schiller di Jena (Germania), ha pubblicato un importante studio su Nature Astronomy, intitolato ‘GW190521 as a dynamical capture of two nonspinning black holes’, in cui prova a interpretare la natura enigmatica di questo segnale gravitazionale anomalo.

Attraverso simulazioni effettuate tramite calcolatore, gli scienziati hanno appurato come un modello che preveda l’esistenza di sistemi binari composti da coppie di buchi con orbite allungate, in grado di dare luogo a collisioni rapide e puntuali, sia compatibile con l’evento anomalo di breve durata osservato. Se confermato, il risultato potrebbe fornire un nuovo strumento per l’interpretazione dei segnali gravitazionali, aumentando la comprensione delle configurazioni che caratterizzano i sistemi binari di buchi neri.

Osservate per la prima volta nel 2015, le onde gravitazionali, impercettibili perturbazioni dello spaziotempo, sono in grado fornirci preziose informazioni sui corpi celesti che compongono i sistemi binari responsabili della loro emissione, nonché sull’evoluzione dinamica di questi stessi sistemi. Nel caso dei buchi neri, i segnali gravitazionali rivelati hanno trovato fino a oggi corrispondenza con le previsioni del modello utilizzato per interpretarli, che distingue tre diverse fasi nel processo di coalescenza: iniziale, caratterizzata dalla vorticosa rotazione dei buchi neri uno intorno all’altro (inspiral); centrale, relativa alla fusione (merger); e finale, durante la quale il nuovo corpo celeste venutosi a creare si espande e si contrae prima di stabilizzarsi (ringdown).

“L’analisi del segnale registrato il 21 maggio 2019 dalle collaborazioni LIGO e Virgo ha fatto emergere delle differenze rispetto ai dati su cui siamo abituati a confrontarci. La forma e la brevità – meno di un decimo di secondo – del segnale associato all’evento, inducono infatti a ipotizzare una fusione istantanea tra due buchi, avvenuta in mancanza di una fase di spiraleggiamento”, commenta Alessandro Nagar, ricercatore della sezione INFN di Torino.

“GW190521 è un segnale particolarmente enigmatico perché la sua forma e la sua natura esplosiva lo rendono estremamente diverso da quanto abbiamo osservato in passato. Inizialmente era stato analizzato come la fusione di due buchi neri pesanti in rapida rotazione che si avvicinano lungo orbite quasi circolari, ma le sue caratteristiche speciali ci hanno indotto a proporre altre possibili interpretazioni”, spiega Rossella Gamba, laureata all’Università di Torino, attualmente ricercatrice dell’Università di Jena e autrice principale della ricerca.

Secondo l’ipotesi proposta dagli autori dell’articolo di Nature Astronomy, a differenza delle sorgenti finora analizzate grazie alle osservazioni degli interferometri LIGO e Virgo, costituite da coppie di buchi neri formatisi a seguito del collasso di una stella in sistemi separati e caratterizzate da un’orbita circolare costante, GW190521 potrebbe essere stato originato dallo scontro di due buchi con orbite eccentriche, a seguito della formazione del sistema binario per mezzo della cattura dinamica di uno dei due corpi da parte dell’altro. Uno scenario contemplato anche dalla Relatività Generale.

“Per verificare l’ipotesi abbiamo elaborato un modello descrittivo avvalendoci di una combinazione di metodi analitici all’avanguardia e simulazioni numeriche, confrontando i dati ottenuti con il segnale. In questo modo abbiamo scoperto che una fusione altamente eccentrica spiega l’osservazione meglio di qualsiasi altra ipotesi avanzata in precedenza. Le probabilità di errore sono 1:4300”, commenta Matteo Breschi, ricercatore dell’Università di Jena e coautore dello studio.

Il modello impiegato per interpretare l’evento fornisce inoltre possibili indizi sulle condizioni alla base dell’eventuale nascita ed evoluzione dinamica della tipologia di sistema binario descritto. La cattura dinamica potrebbe infatti avvenire in ambienti molto densi, come gli ammassi stellari, dove i buchi neri binari possono formarsi.

“Uno dei due buchi neri situati in un simile ambiente, in possesso inizialmente di un’orbita non vincolata, potrebbe essere infatti catturato dal campo gravitazionale dell’altro, dando vita al sistema binario che porterà alla rapida fusione dei suoi componenti posti su traiettorie altamente eccentriche. L’ipotesi potrebbe inoltre spiegare le elevate masse dei due buchi neri progenitori coinvolti che, in ambiente stellare molto denso, potrebbero essere andati incontro a eventi di fusione precedenti. Sebbene i tassi di fusione siano attualmente molto incerti, le catture dinamiche dovrebbero essere molto rare. Ma questo rende i nostri risultati ancora più eccitanti”, illustra Gregorio Carullo, ricercatore del Niels Bohr Institute di Copenaghen.

Per effettuare l’analisi di GW190521 è stato necessario sviluppare un quadro di riferimento teorico nell’ambito della relatività generale, in grado di descrivere le fusioni di buchi neri altamente eccentrici, confrontando infine le previsioni del modello con le simulazioni.

“Il lavoro sviluppato dai gruppi di ricerca di Torino e Jena non ha precedenti, in quanto nessun modello di cattura dinamica era mai stato impiegato prima d’ora nell’analisi dei dati delle onde gravitazionali, che ha richiesto estrema attenzione e una notevole potenza di calcolo”, specifica Simone Albanesi, ricercatore dell’Università di Torino.

“Lo sviluppo del modello analitico per le binarie eccentriche e la cattura dinamica è stato avviato nel 2019, con diversi progressi teorici originali in quello che all’epoca era un territorio per lo più inesplorato”, conclude Piero Rettegno, laureato all’Università di Torino e attualmente ricercatore INFN della sezione di Torino.

 

GW190521 potrebbe dunque essere il primo incontro dinamico di buchi neri osservato. Si è sempre pensato che questi eventi fossero molto rari, ma ciò renderebbe la scoperta ancora più importante. Questa ipotesi potrebbe spiegare anche le masse insolitamente elevate dei buchi neri ‘progenitori’ osservati: in ambienti densi, i buchi neri potrebbero subire fusioni multiple e la loro massa crescere dopo ogni collisione.

Testo e immagine dall’Area Relazioni Esterne e con i Media dell’Università degli Studi di Torino

Gaia l’investigatrice, così stana le coppie di buchi neri supermassicci

Un team di astrofisici guidato da Filippo Mannucci dell’Istituto nazionale di astrofisica ha ideato un nuovo metodo per individuare rapidamente e sull’intero cielo coppie di buchi neri supermassicci destinati a fondersi insieme alle rispettive galassie. La tecnica si avvale dei dati raccolti dal telescopio spaziale Gaia dell’ESA ed è stata confermata da osservazioni con Hubble, LBT e altri grandi telescopi da terra. I risultati sono descritti in un articolo pubblicato oggi su Nature Astronomy.

È una verità universalmente riconosciuta che un buco nero in possesso di una buona massa debba necessariamente cercare un compagno. Lo abbiamo appurato, da qualche anno, per buchi neri relativamente piccoli – decine di masse solari – grazie alla rivelazione delle onde gravitazionali che generano quando si fondono. E lo stesso sembra valere anche per quelli supermassicci – centinaia di milioni, se non miliardi, di masse solari – che albergano nel cuore delle galassie. Quando due galassie si scontrano, e lo fanno spesso, si uniscono e i due buchi neri supermassicci iniziano a spiraleggiare l’uno attorno all’altro, in quella danza gravitazionale che prima o poi li condurrà inevitabilmente a fondersi.

Di coppie di questo genere – in grado di produrre due nuclei galattici attivi (AGN, dall’inglese active galactic nucleus) all’interno dell’unica galassia risultante dalla fusione – l’universo dev’essere pieno: è quanto prevedono i modelli cosmologici basati sul cosiddetto merging gerarchico. Ma è una previsione ancora in attesa di verifica osservativa, a causa dell’enorme difficoltà che individuare queste coppie comporta. Ora però, grazie all’intuizione di un team d’astrofisici guidato da Filippo Mannucci dell’Istituto nazionale di astrofisica (INAF), è stato messo a punto un metodo originale che consente di ottenere campioni estesi e affidabili di “candidati AGN doppi” – vale a dire, appunto, possibili coppie di buchi neri supermassicci. La nuova tecnica, descritta in un articolo pubblicato oggi su Nature Astronomy, sfrutta i dati raccolti da uno strumento progettato per tutt’altro scopo: il satellite Gaia dell’Agenzia Spaziale Europea (ESA), nato per compilare la mappa multidimensionale più precisa e completa della Via Lattea. E si avvale, per la verifica dei risultati, delle capacità straordinarie di eseguire osservazioni ad alta risoluzione consentite, dallo spazio, dal telescopio Hubble, e da terra – grazie al sistema di ottiche adattive che annulla le distorsioni introdotte dalla turbolenza atmosferica – dal Large Binocular Telescope (LBT).

immagini ad alta risoluzione, ottenute dal Large Binocular Telescope (LBT) grazie al sistema di ottiche adattive SOUL realizzato dall’INAF, di cinque coppie di buchi neri supermassicci selezionate nell’archivio di Gaia tramite la tecnica dei picchi multipli. Crediti: F. Mannucci et al., Nature Astronomy, 2022

«Abbiamo scavato nello sconfinato archivio del telescopio spaziale Gaia dell’ESA e utilizzato per la prima volta una proprietà misurata ma mai usata. Questo parametro», spiega Filippo Mannucci, dirigente di ricerca all’INAF di Arcetri,

«si è rivelato utilissimo per il nostro problema, aprendo un campo tutto nuovo. È stato emozionante vedere come i telescopi specializzati per ottenere immagini di alta risoluzione – il telescopio spaziale Hubble e, ancora meglio, LBT, grazie al sistema di ottiche adattive SOUL realizzato dall’INAF – abbiano confermato il nuovo metodo: un ottimo esempio di uso sincronizzato di vari telescopi, spaziali e da terra. Dopo la scrittura dell’articolo abbiamo ottenuto altre conferme e iniziato un grande studio statistico usando anche i telescopi del Keck, alle Hawaii, e il Very Large Telescope dell’ESO, in Cile. E stiamo usando altri telescopi da terra, come TNG, NTT e Asiago, per allargare il campione».

«Il nuovo parametro pubblicato nell’ultima release del catalogo Gaia», aggiunge Elena Pancino dell’INAF di Arcetri, coautrice dello studio, riferendosi alla “proprietà misurata ma mai usata” citata da Mannucci, «indica la presenza di picchi multipli nei profili di luce unidimensionali prodotti dal satellite ESA, e si sta rivelando utile soprattutto alla comunità stellare galattica per identificare binarie visuali o fisiche, per cui abbiamo pensato di testarlo sugli AGN».

Volendo fare un’analogia, pensiamo a una fotocellula piazzata all’ingresso di un’attrazione – un museo, uno stadio, un supermercato – per contare le persone che entrano: una persona, un picco di segnale. Se entro un intervallo di tempo molto breve – un secondo, per esempio – vengono prodotti due picchi, significa che sono entrate due persone a distanza molto ravvicinata. Forse una coppia? È possibile. Per capirlo, occorre anzitutto stabilire sotto a quale soglia di distanza fra due picchi possa aver senso ipotizzare che si tratti di una coppia.

Fuor di metafora: quanto devono essere vicini fra loro, due buchi neri, per poter essere considerati una coppia?

«Sono una coppia quando fanno parte della stessa galassia, ma questo non riusciamo a determinarlo direttamente. Assumiamo quindi una distanza massima di circa 20mila anni luce», dice un altro dei coautori dello studio, Alessandro Marconi dell’Università di Firenze. «È una distanza inferiore a quella fra il Sole e il centro della Via Lattea, che ad un redshift superiore a 0.5 corrisponde a meno di 1 secondo d’arco».

Assumendo tale soglia, le coppie di buchi neri supermassicci attualmente note sono soltanto quattro. Ma con il metodo del gruppo di astronomi fiorentini questo numero potrebbe esplodere, arrivando potenzialmente a molte centinaia. Questo grazie al fatto che Gaia, pur realizzato per studi stellari, è l’unico strumento che abbia osservato l’intero cielo in alta risoluzione, ed è dunque anche l’unico in grado di trovare ­– evidenziandole con i suoi picchi multipli – queste coppie molto vicine, e molto rare, di buchi neri supermassicci.

«Certo, una volta individuate, queste potenziali coppie vanno poi confermate una a una, ed è un processo lento», sottolinea Mannucci, «che richiede il ricorso a misure di spettroscopia. Per ora siamo riusciti a confermarne due, ma già abbiamo ottenuto dall’ESO la possibilità di usare lo strumento MUSE del Very Large Telescope per osservarne altre trenta nel prossimo semestre».

Allo studio pubblicato oggi su Nature Astronomy, intitolato “Unveiling the population of dual- and lensed- AGNs at sub-arcsec separations with Gaia”, hanno preso parte numerosi astrofisici dell’INAF di Arcetri (oltre ai già citati Filippo Mannucci ed Elena Pancino, Francesco Belfiore, Giovanni Cresci, Antonino Marasco, Emanuele Nardini, Enrico Pinna), dell’Università di Firenze (oltre ad Alessandro Marconi, Elisabetta Lusso e Giulia Tozzi), dell’INAF di Brera (Paola Severgnini, Paolo Saracco) e di alcuni istituti esteri (Claudia Cicone dell’Università di Oslo, Anna Ciurlo di Ucla e Sherry Yeh del W. M. Keck Observatory).

rappresentazione artistica di una coppia di buchi neri supermassicci durante una fusione galattica. Crediti: ESA

Testo e foto dall’Ufficio stampa – Struttura per la Comunicazione di Presidenza Istituto Nazionale di Astrofisica (INAF)

Un gruppo di ricerca internazionale rileva il precursore di un buco nero supermassiccio nei dati di archivio del telescopio Hubble

Una collaborazione internazionale, che ha visto la partecipazione di astrofisici della Sapienza e dell’Istituto nazionale di astrofisica – Inaf, ha scoperto un oggetto distante circa 13 miliardi di anni luce dalla Terra, estremamente compatto e arrossato dalla polvere stellare. La rilevazione, effettuata grazie all’utilizzo del telescopio spaziale Hubble, farà luce sul mistero della crescita dei buchi neri supermassicci nell’universo primordiale. I risultati del lavoro sono stati pubblicati su Nature.

il precursore di un buco nero supermassiccio
Il precursore di un buco nero supermassiccio nei dati di archivio di Hubble. Figura 1: GNz7q, un oggetto scoperto a circa 13,1 miliardi di anni luce dalla Terra che mostra segni di un buco nero in rapida crescita all’interno di una galassia in forte formazione stellare e ricca di polvere interstellare (starburst polverosa), colorato nell’immagine combinando i dati di tre osservazioni a colori del telescopio spaziale Hubble. Trovato nella regione GOODS-North[1], una delle regioni del cielo più studiate fino ad oggi, GNz7q è l’oggetto rosso al centro dell’immagine ingrandita (Credito: ESA/Hubble/Fujimoto et al.)

La scoperta di buchi neri supermassicci nell’universo primordiale, con masse fino a diverse centinaia di milioni di volte quella del sole, ha sollevato il problema di capire come oggetti di questa taglia siano stati in grado di formarsi e crescere nel breve periodo di tempo successivo alla nascita dell’Universo (meno di un miliardo di anni). Teoricamente, un buco nero inizia dapprima ad aumentare la sua massa accrescendo gas e polvere nel nucleo di una galassia ricca di polvere e caratterizzata da elevati tassi di formazione stellare (una cosiddetta galassia starburst polverosa). L’energia generata nel processo spazza via i materiali circostanti, trasformando il sistema in un quasar, una sorgente astrofisica molto luminosa e compatta.

Fino a oggi sono state scoperte galassie starburst polverose e quasar luminosi post-transizione ad appena 700-800 milioni di anni dopo il Big Bang, ma non è mai stato trovato un “giovane” quasar nella fase di transizione, la cui scoperta deterrebbe la chiave per la comprensione dei meccanismi di formazione dei buchi neri supermassicci nell’Universo primordiale.

Un gruppo di ricerca internazionale, coordinato dall’astronomo Seiji Fujimoto dell’Università di Copenaghen, con la partecipazione, fra gli altri, di ricercatori del Dipartimento di Fisica della Sapienza e dell’Istituto nazionale di astrofisica – Inaf, ha rianalizzato una grande quantità di dati d’archivio estratti dal telescopio spaziale Hubble e ha scoperto un oggetto, denominato poi GNz7q, che è proprio l’anello mancante tra le galassie starburst e i quasar luminosi nell’universo primordiale. I risultati del lavoro sono stati pubblicati sulla rivista Nature.

Le osservazioni spettroscopiche con i radiotelescopi hanno mostrato che il giovane quasar è nato solo 750 milioni di anni dopo il Big Bang. Tali osservazioni, sono state poi confrontate con i modelli teorici. Questa importante fase del lavoro è stata svolta da Rosa Valiante dell’Inaf e Raffaella Schneider della Sapienza e ha mostrato come le caratteristiche dello spettro elettromagnetico di questo oggetto, dai raggi X alle onde radio, non si discostano dalle previsioni delle simulazioni teoriche.

“Questo suggerisce che GNz7q sia il primo esempio di buco nero in rapida crescita nel centro di una galassia starburst polverosa – commentano Schneider e Valiante. “Pensiamo che GNz7q sia un precursore dei buchi neri supermassicci trovati nell’universo primordiale”.

La scoperta di GNz7q non solo rappresenta un elemento importante per comprendere l’origine dei buchi neri supermassicci, ma anche un motivo di sorpresa per i ricercatori: la rilevazione infatti è stata fatta in una delle regioni più osservate nel cielo notturno – denominata GOODS, Great Observatories Origins Deep Survey, oggetto d’indagine astronomica dei telescopi più potenti mai costruiti (ovvero quelli operativi nello spazio come Hubble, Herschel e XMM-Newton dell’ESA, il telescopio Spitzer della NASA e l’Osservatorio a raggi X Chandra, oltre a potenti telescopi terrestri, compreso il telescopio Subaru) – suggerendo quindi che sorgenti di questo tipo possano essere più frequenti di quanto si pensasse in precedenza.

Il gruppo di ricerca si propone di condurre una ricerca sistematica di sorgenti simili utilizzando campagne osservative ad alta risoluzione e di sfruttare gli strumenti spettroscopici del telescopio spaziale James Webb della NASA/ESA/CSA, una volta che sarà in regolare funzionamento, per studiare oggetti come GNz7q con una ricchezza di dettagli senza precedenti.

il precursore di un buco nero supermassiccio
Il precursore di un buco nero supermassiccio nei dati di archivio di Hubble. Figura 2: un’impressione artistica di un giovane buco nero in crescita che emerge dal centro di una galassia starburst polverosa, mentre i materiali densi circostanti di gas e polvere vengono spazzati via dalla potente energia generata quando il buco nero evolve rapidamente accrescendo la materia circostante. (Credito: ESA/Hubble)

Riferimenti:

A dusty compact object bridging galaxies and quasars at cosmic dawn – S. Fujimoto, G. B. Brammer, D. Watson, G. E. Magdis, V. Kokorev, T. R. Greve, S. Toft, F. Walter, R. Valiante, M. Ginolfi, R. Schneider, F. Valentino, L. Colina, M. Vestergaard, R. Marques-Chaves, J. P. U. Fynbo, M. Krips, C. L. Steinhardt, I. Cortzen, F. Rizzo & P. A. Oesch – Nature https://doi.org/10.1038/s41586-022-04454-1 

Testo e immagini dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma

Una rete di pulsar per “ascoltare” il brusio cosmico di fondo delle onde gravitazionali

Pubblicato su Monthly Notices of the Royal Astronomical Society uno studio internazionale che ha visto coinvolti i ricercatori dell’Università di Milano-Bicocca e di INAF-Cagliari

pulsar delle Vele stelle a neutroni onde gravitazionali bassissima frequenza
Una rete di pulsar per “ascoltare” il brusio cosmico di fondo delle onde gravitazionali. Nella foto, la Pulsar delle Vele. Foto NASA/CXC/PSU/G.Pavlov et al., in pubblico dominio
Milano, 12 gennaio 2021 – I ricercatori del progetto International Pulsar Timing Array (IPTA), avvalendosi dei lavori e delle competenze di diverse collaborazioni di astrofisici di tutto il mondo – inclusi membri dell’Università di Milano-Bicocca e dell’Istituto Nazionale di Astrofisica (INAF) – hanno recentemente completato l’analisi del più completo archivio oggi disponibile di dati sui tempi di arrivo degli impulsi di 65 pulsar, ciò che resta di stelle di grande massa esplose come supernove. Questa accurata indagine sperimentale rafforza le indicazioni teoriche che suggerirebbero la presenza di un vero e proprio “brusio” cosmico, prodotto da onde gravitazionali di frequenze ultra basse (da miliardesimi a milionesimi di Hertz) emesse da una moltitudine di coppie di buchi neri super-massicci.

Le pulsar studiate dal team sono dette “al millisecondo” perché ruotano attorno al proprio asse centinaia di volte al secondo, emettendo stretti fasci di onde radio che ci appaiono come impulsi a causa del loro moto di rotazione. I tempi di arrivo di questi impulsi sono stati poi combinati in un unico insieme di dati, unendo le osservazioni indipendenti di tre collaborazioni internazionali: l’European Pulsar Timing Array (EPTA, a cui appartengono i ricercatori dell’INAF e dell’Università di Milano-Bicocca coinvolti nel progetto), il North American Nanohertz Observatory for Gravitational Waves (NANOGrav), e il Parkes Pulsar Timing Array in Australia (PPTA). Queste tre collaborazioni sono anche le fondatrici dell’IPTA.

L’indagine del team di IPTA su questi dati combinati ha messo in luce la presenza di un segnale a bassissima frequenza. «È un segnale molto emozionante! Anche se non abbiamo ancora prove definitive, potrebbe essere il primo passo verso la rivelazione del fondo cosmico di onde gravitazionali», dice Siyuan Chen, membro delle collaborazioni EPTA e NANOGrav, e il coordinatore per IPTA della pubblicazione dell’indagine in un articolo sulla rivista Monthly Notices of the Royal Astronomical Society (“The International Pulsar Timing Array second data release: Search for an isotropic Gravitational Wave Background” – DOI: 10.1093/mnras/stab3418).

Boris Goncharov del PPTA è comunque ancora cauto sulle possibili interpretazioni di tali segnali: «Stiamo anche esaminando a cos’altro potrebbe essere associato questo segnale. Per esempio, potrebbe magari derivare da un rumore presente nei dati delle singole pulsar che potrebbe essere stato modellato in modo improprio nelle nostre analisi».

Spiega Delphine Perrodin, dell’INAF di Cagliari, coautrice del lavoro: «Questo risultato conferma e rafforza notevolemente il graduale emergere di segnali simili che sono stati trovati negli ultimi anni nei singoli insiemi di dati, indipendentemente dalle varie collaborazioni partecipanti a IPTA. In particolare, nel quadro dell’esperimento EPTA, siamo abituati da oltre due decenni a combinare i dati provenienti da cinque diversi radiotelescopi europei, fra cui il Sardinia Radio Telescope (SRT, localizzato in Sardegna), e spesso ad osservare simultaneamente la stessa pulsar. Questa esperienza è stata molto utile nella creazione dell’attuale versione dei dati. Inoltre, all’interno di EPTA è stata sviluppata buona parte della metodologia utilizzata per capire le caratteristiche del possibile segnale nel corso dei molti anni di monitoraggio».

Sulla possibile origine del segnale lavora un altro coautore della pubblicazione, Alberto Sesana, che studia queste tematiche col suo team presso l’Università di Milano Bicocca: «Le caratteristiche di questo segnale comune tra le pulsar sono in ottimo accordo con quelle attese per il fondo cosmico di onde gravitazionali, frutto della sovrapposizione di molteplici segnali di onde gravitazionali emessi da una popolazione di buchi neri binari super-massicci. Si tratta di coppie di buchi neri di grande massa che orbitano spiraleggiando l’uno intorno all’altro, con ciò liberando grandi quantità di energia sotto forma di onde gravitazionali».

La sovrapposizione di tutte queste onde, di frequenze leggermente diverse fra loro e provenienti da tutte le direzioni del cosmo, può essere immaginato come un brusio indistinto (in quel caso prodotto da onde sonore) che potremmo ascoltare all’interno di una sala affollata.

Il prossimo passo per il team di IPTA sarà la misura della cosiddetta “correlazione spaziale” tra le pulsar. Spiega Andrea Possenti, dell’INAF di Cagliari, e coautore del lavoro: «La correlazione del segnale tra le coppie di pulsar è la chiave per chiarire la fonte del segnale. Perché si tratti del fondo di onde gravitazionali, ogni coppia di pulsar deve comportarsi in un modo molto specifico, a seconda della loro separazione angolare nel cielo. Al momento non si può concludere nulla al proposito: abbiamo infatti bisogno di un segnale più forte per misurare questa correlazione».

Gli fa eco Bhal Chandra Joshi, membro dell’InPTA (il consorzio sperimentale con base in India, da poco entrato a sua volta nel IPTA): «Il primo indizio è un segnale come quello ora veduto nei dati dell’IPTA. Poi, con più dati, speriamo che il segnale inizierà a mostrare le attese correlazioni spaziali: a quel punto sapremo che si tratta davvero del fondo cosmico di onde gravitazionali».

Il lavoro già ferve all’interno di IPTA per aggiungere nuove osservazioni, sempre più precise, alla combinazione di dati esistenti.  Conclude Delphine Perrodin: «Questo è un vero lavoro di squadra internazionale, all’interno del quale il contributo italiano, fra INAF e Università di Milano Bicocca, diviene sempre più importante, con le osservazioni presso SRT, la combinazione con i dati degli altri radio telescopi, la loro analisi ed interpretazione astrofisica. Non si può che essere ottimisti circa le capacità di arrivare presto ad una scoperta che sarebbe epocale».

Testo dall’Ufficio Stampa Università di Milano-Bicocca sulla rete di pulsar per “ascoltare” il brusio cosmico di fondo delle onde gravitazionali.
Articoli Correlati:
https://www.scientificult.it/2021/10/27/european-pulsar-timing-array-osservazione-onde-gravitazionali-a-bassissima-frequenza/
Con l’European Pulsar Timing Array un altro passo verso l’osservazione di onde gravitazionali a bassissima frequenza
Pubblicato su MNRAS lo studio che ha visto in prima linea i ricercatori dell’Università di Milano-Bicocca
EPTA onde gravitazionali a bassissima frequenza
Con l’European Pulsar Timing Array un altro passo verso l’osservazione di onde gravitazionali a bassissima frequenza. Il logo dell’EPTA di Robert Ferdman, Sotirios Sanidas, CC BY-SA 3.0

 

Milano, 27 ottobre 2021 – L’European Pulsar Timing Array (EPTA) è una collaborazione scientifica che riunisce team di astronomi afferenti ai più grandi radiotelescopi Europei, e coordina gruppi di ricercatori specializzati nell’analisi dei dati e nella modellizzazione dei segnali di onde gravitazionali. Fra questi è presente il gruppo di astrofisica del Dipartimento di Fisica “Giuseppe Occhialini” dell’Università di Milano-Bicocca. L’EPTA ha recentemente pubblicato sulla storica rivista scientifica Monthly Notices of the Royal Astronomical Society un’analisi dettagliata (“Common-red-signal analysis with 24-yr high-precision timing of theEuropean Pulsar Timing Array: Inferences in the stochasticgravitational-wave background search“; DOI: 10.1093/mnras/stab2833) di un segnale compatibile con il tanto ricercato fondo di onde gravitazionali proveniente da una popolazione cosmica di binarie di buchi neri supermassicci.
Sebbene non sia ancora possibile confermare l’origine gravitazionale del segnale, questo rappresenta un altro passo significativo nello sforzo di rivelare per la prima volta onde gravitazionali a bassissima frequenza, con frequenze dell’ordine di un miliardesimo di Hertz. Il segnale candidato è emerso da un’analisi dettagliata senza precedenti condotta utilizzando due metodologie indipendenti. Inoltre, il segnale presenta forti somiglianze con quello riscontrato da analisi di altri team.
Le pulsar sono stelle di neutroni molto compatte che emettono fasci di onde radio collimati  in direzione dei poli magnetici, in generale non allineati con l’asse di rotazione della stella creando un “effetto faro”. Se i fasci attraversano la nostra linea di vista, da terra osserviamo un impulso periodico molto preciso: un orologio che batte un tic ad ogni rotazione della pulsar. Un pulsar timing array (PTA) è un insieme di pulsar rotanti molto stabili, utilizzate come un enorme rivelatore galattico di onde gravitazionali. PTA, sensibile a onde gravitazionali con frequenze del miliardesimo di Hertz, è quindi un osservatorio complementare agli attuali rivelatori a terra LIGO/Virgo/Kagra, sensibili a frequenze comprese fra 10 Hz ad 1000 Hertz. Mentre questi ultimi rivelano le repentine collisioni di buchi neri di massa stellare e stelle di neutroni, un PTA può osservare onde emesse da sistemi binari di buchi neri supermassicci che spiraleggiano l’uno intorno all’altro al centro delle galassie. Il sovrapporsi di moltissimi di questi segnali, provenienti da una popolazione cosmica di binarie massicce, crea un cosiddetto “fondo stocastico” di onde gravitazionali.
«Possiamo misurare piccole fluttuazioni nei tempi di arrivo del segnale radio delle pulsar sulla Terra, causate dalla deformazione dello spazio-tempo dovuta al passaggio di un’onda gravitazionale. In pratica queste deformazioni si manifestano come una perturbazione a bassissima frequenza dei tempi di arrivo degli impulsi osservati, perturbazione comune a tutte le pulsar di un PTA», spiega il dottor Golam Shaifullah, ricercatore presso il Dipartimento di Fisica “Giuseppe Occhialini”, co-autore principale dello studio.
Tuttavia, l’ampiezza di questa perturbazione è incredibilmente piccola (stimata nell’ordine delle decine di miliardesimi di secondo) e può essere confusa o mascherata da tantissimi altri effetti fisici che possono creare piccole instabilità nel periodo di rotazione delle pulsar, elementi della rete PTA. Per convalidare i risultati sono stati quindi utilizzati più codici indipendenti con diverse tecniche statistiche per mitigare fonti alternative di rumore e identificare il segnale gravitazionale.
È importante sottolineare che nell’analisi sono state utilizzate due procedure “end-to-end” indipendenti per la verifica incrociata dei risultati. Inoltre, sono stati utilizzati tre metodi indipendenti per tenere conto dei possibili errori sistematici dovuti all’incertezza sulla conoscenza delle masse e posizioni dei corpi celesti nel sistema solare: incertezza che può indurre falsi positivi nella rivelazione del segnale stocastico di onde gravitazionali.
Le analisi svolte da EPTA con entrambe le procedure hanno riscontrato la presenza di un chiaro segnale candidato per un fondo stocastico gravitazionale, e le sue proprietà spettrali (ovvero come l’ampiezza della perturbazione osservata varia con la frequenza) rimangono all’interno delle aspettative teoriche per questo tipo di segnale.
Il dottor Nicolas Caballero, ricercatore presso il Kavli Institute for Astronomy and Astrophysics di Pechino e co-autore principale, spiega: «L’EPTA ha trovato per la prima volta indicazioni di questo segnale nei dati precedentemente pubblicati nel 2015, ma poiché i risultati avevano maggiori incertezze statistiche, sono stati discussi rigorosamente solo come limiti superiori. I nostri nuovi dati ora confermano chiaramente la presenza di questo segnale, rendendolo un candidato per un fondo stocastico di onde gravitazionali».
La Relatività Generale di Einstein prevede una relazione molto specifica tra le deformazioni spazio-temporali sperimentate dai segnali radio provenienti da pulsar situate in diverse direzioni nel cielo. Gli scienziati la chiamano correlazione spaziale del segnale o curva di Hellings e Downs. Il suo rilevamento identificherà in modo univoco l’eventuale origine gravitazionale del segnale osservato.
«Al momento – nota il dottor Siyuan Chen, ricercatore all’LPC2E, CNRS di Orléans in Francia, co-autore principale dello studio – le incertezze statistiche nelle nostre misurazioni non ci consentono ancora di identificare la presenza della correlazione spaziale prevista per il segnale dovuto ad onde gravitazionali. Per ulteriori conferme dobbiamo includere i dati di più pulsar nell’analisi, tuttavia i risultati attuali sono molto incoraggianti».
L’EPTA è un membro fondatore dell’International Pulsar Timing Array (IPTA). Poiché anche le analisi dei dati indipendenti eseguite dagli altri partner IPTA (cioè gli esperimenti NANOGrav e PPTA) hanno indicato segnali comuni simili, è diventato fondamentale applicare più algoritmi di analisi per aumentare la confidenza in un possibile rilevamento futuro di questo fondo stocastico. I membri dell’IPTA stanno lavorando insieme, traendo conclusioni dal confronto delle analisi dei diversi dati per prepararsi al meglio per i prossimi passi.
Alberto Sesana, professore associato di Milano-Bicocca e membro dell’EPTA, conclude: «Il rilevamento di un fondo di onde gravitazionali proveniente da una popolazione di sistemi binari di buchi neri supermassicci o da altre sorgenti di origine cosmica fornirà informazioni uniche sui modelli cosmologici di evoluzione dell’Universo, imponendo forti vincoli al processo di aggregazione delle galassie come le vediamo oggi. Pertanto, stiamo intensificando i nostri sforzi aggiungendo i dati di nuove pulsar e rafforzando i controlli incrociati delle nostre analisi. Non c’è spazio per gli errori».
Testo dall’Ufficio Stampa Università di Milano-Bicocca, circa lo studio pubblicato su Monthly Notices of the Royal Astronomical Society, altro passo verso l’osservazione di onde gravitazionali a bassissima frequenza.

Alle origini del buco nero supermassiccio della Via Lattea

Uno studio coordinato dal Dipartimento di Fisica della Sapienza fornisce nuove informazioni sulla formazione del buco nero che si trova al centro dalla nostra Galassia. Lo studio suggerisce che il buco nero super massiccio sia il residuo di un insieme di buchi neri più leggeri che, orbitando, hanno perso energia fino a fondersi. I risultati del lavoro sono stati pubblicati sulla rivista Monthly Notices of the Royal Astronomical Society.

centro della Galassia buco nero supermassiccio Via Lattea costellazione del Sagittario
Costellazione del Sagittario. Foto di Kevin Wigell, CC BY-SA 3.0

Sagittarius A* (Sgr A*) è una intensa sorgente di onde radio molto compatta, situata al centro della Via Lattea, e nello specifico, nella costellazione del Sagittario.

Sgr A* è anche il punto della nostra Galassia in cui si trova un oggetto estremamente compatto – 4 milioni di volte più massiccio del Sole – un componente caratteristico dei centri di molte galassie ellittiche e spirali.

L’identificazione di questo “mostro celeste” ha fatto vincere il premio Nobel 2020 per la fisica agli scienziati R. Genzel e A. Ghez, che hanno effettuato misurazioni dei movimenti delle stelle nella regione centrale della Galassia così precise da contribuire a dimostrare l’esistenza di questo oggetto, molto probabilmente assimilabile a un buco nero supermassiccio.

L’esistenza di buchi neri, così come la presenza di oggetti supermassicci e compatti in altre galassie oltre la nostra, sembra essere quindi indubbia. Ma mentre l’origine dei cosiddetti buchi neri stellari ha una spiegazione fisica ormai assodata (sono il residuo di stelle massicce ormai spente) quella dei buchi neri supermassicci rimane ancora incerta.

Un nuovo studio coordinato da Roberto Capuzzo Dolcetta del Dipartimento di Fisica della Sapienza Università di Roma in collaborazione con la École Normale Supérieure di Parigi, dimostra come la formazione del buco nero supermassiccio al centro della nostra Galassia possa derivare dalla rapidissima aggregazione, che avviene tramite collisioni successive, di un “pacchetto” di buchi neri più leggeri, trasportati al centro della Galassia dagli ammassi stellari che li ospitavano, e che hanno orbitato perdendo progressivamente energia, fino a fondersi.

I risultati dello studio, pubblicati sulla rivista Monthly Notices of the Royal Astronomical Society, sono stati ottenuti attraverso simulazioni numeriche sofisticate e di alta precisione, condotte anche su computers del Centro di Ricerca Amaldi della Sapienza.

Riferimenti:

Dynamics of a superdense cluster of black Holes and the formation of the Galactic supermassive black hole – P. Chassonnery, R. Capuzzo Dolcetta – Monthly Notices of the Royal Astronomical Society https://doi.org/10.1093/mnras/stab1016

Testo, foto e video dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma sulle origini del buco nero supermassiccio della Via Lattea.

Milkomeda: la “supergalassia” che verrà 

Un nuovo studio internazionale, coordinato da un team del Dipartimento di Fisica della Sapienza Università di Roma, ha realizzato sofisticate simulazioni numeriche per prevedere i tempi cosmici nei quali la nostra Galassia si scontrerà con Andromeda fino a fondersi in un’unica “supergalassia”. I risultati del lavoro, che gettano nuova luce sul destino del nostro sistema stellare, sono stati pubblicati sulla rivista Astronomy and Astrophysics

La nostra galassia appartiene a un ammasso di galassie detto Gruppo Locale, composto da circa settanta sistemi stellari per la maggior parte di relativamente piccole dimensioni. Il centro di massa del Gruppo Locale si trova in un punto compreso fra la Via Lattea e la Galassia di Andromeda, che sono infatti, insieme alla galassia M 33, le sue componenti principali.

Le moderne osservazioni astronomiche suggeriscono l’esistenza all’interno sia della Via Lattea, che di Andromeda, di buchi neri supermassicci, con una massa superiore milioni di volte a quella del nostro Sole che a sua volta pesa circa un milione di volte la Terra. Non solo, la posizione e la velocità relativa delle due galassie lasciano ipotizzare una collisione futura tra i due sistemi che apre numerosi interrogativi sui loro destini e su quelli dei rispettivi buchi neri.

Oggi, un nuovo studio coordinato dal Dipartimento di Fisica della Sapienza Università di Roma, in collaborazione con l’Universitá di Heidelberg (Germania) e la Northwestern University (USA), fornisce le risposte a queste domande e individua i tempi cosmici in cui avverranno gli scontri fra le due galassie e i loro buchi neri.

Il lavoro, pubblicato sulla rivista Astronomy and Astrophysics, suggerisce che fra circa 10 miliardi di anni la Via Lattea e Andromeda si fonderanno in un’unica “supergalassia”, che potrebbe prendere il nome di Milkomeda.

I ricercatori sono giunti a tali risultati mediante sofisticate simulazioni numeriche, le quali sono state realizzate con un sistema di calcolo di alte prestazioni a disposizione del gruppo di astrofisica teorica (ASTRO) del Dipartimento di Fisica della Sapienza.

“In un tempo senz’altro lungo rispetto ai tempi umani, ma non enorme rispetto a quelli cosmici, le due galassie collideranno e si fonderanno in un’unica supergalassia, Milkomeda – spiega Roberto Capuzzo Dolcetta della Sapienza. “La prima collisione tra le galassie avverrà tra 4 miliardi di anni e la fusione tra circa 10 miliardi anni, tempo curiosamente simile a quella che è la stima dell’età dell’Universo, ovvero dal Big Bang a oggi”.

I dati ottenuti hanno permesso inoltre ai ricercatori di predire che, in seguito alla collisione galattica e alla fusione, i rispettivi buchi neri supermassicci delle due galassie si troveranno ad orbitare uno vicino all’altro.

“Ciò implica – aggiunge Roberto Capuzzo Dolcetta – che in un tempo mille volte più breve di quello necessario alla collisione delle galassie “madri”, i buchi neri si scontreranno a loro volta dando origine a una esplosione di onde gravitazionali di potenza inimmaginabile, miliardi di volte maggiore di quelle recentemente individuate dai grandi osservatori gravitazionali interferometrici della collaborazione internazionale LIGO-VIRGO negli Stati Uniti e in Italia”.

Il centro della Via Lattea in questa immagine composita da Hubble Space Telescope, Spitzer Space Telescope e Chandra X-ray Observatory. Foto NASA/JPL-Caltech/ESA/CXC/STScI in pubblico dominio

Riferimenti:

Future merger of the Milky Way with the Andromeda galaxy and the fate of their supermassive black holes, Riccardo Schiavi, Roberto Capuzzo-Dolcetta, Manuel Arca-Sedda, and Mario Spera – Astronomy and Astrophysics DOI /10.1051/0004-6361/202038674

 

Testo e video dalla Sapienza Università di Roma.

Onde gravitazionali: le nuove sensazionali scoperte del team internazionale di ricercatori Virgo e LIGO 

Il ruolo degli scienziati UNIPG  

onde gravitazionali Virgo LIGO
Helios Vocca e Roberto Rettori


Si è svolta oggi presso il Rettorato dell’Università degli Studi di Perugia la conferenza stampa di presentazione ai giornalisti umbri delle nuove, sensazionali scoperte scientifiche realizzate dai ricercatori dei progetti Virgo e LIGO.

onde gravitazionali Virgo LIGO
Helios Vocca e Roberto Rettori

All’incontro con i giornalisti – realizzato in contemporanea con l’omologo evento internazionale che ha visto collegati i vari gruppi di ricerca in modalità streaming – erano presenti i professori Helios Vocca, Delegato del Rettore per il settore Ricerca, Valutazione e Fund-raising e Roberto Rettori, Delegato del Rettore per il settore Orientamento, Tutorato e Divulgazione scientifica, insieme a numerosi Delegati Rettorali e Direttori dei Dipartimenti dello Studium.

Onde gravitazionali Virgo LIGO

I ricercatori dei progetti Virgo e LIGO hanno annunciato l’osservazione della fusione di un sistema binario di massa straordinariamente grande: due buchi neri di 66 e 85 masse solari, hanno prodotto alla fine un buco nero di circa 142 masse solari. Il buco nero finale è il più massiccio rivelato finora per mezzo delle onde gravitazionali. Si trova in una regione di massa entro cui non è mai stato osservato prima un buco nero, né con onde gravitazionali né con osservazioni elettromagnetiche, e potrebbe servire a spiegare la formazione dei buchi neri supermassicci. Inoltre, il componente più pesante del sistema binario iniziale si trova in un intervallo di massa proibito dalla teoria dell’evoluzione stellare e rappresenta una sfida per la nostra comprensione degli stadi finali della vita delle stelle massicce.

Helios Vocca

“Il risultato di oggi è per noi fonte di enorme soddisfazione – dichiara il professore Helios Vocca, responsabile del gruppo Virgo Perugia – perché si tratta di una nuova scoperta realizzata grazie ad un detector che è frutto anche del lavoro realizzato dal gruppo Virgo Perugia in trent’anni di attività: un impegno, quello del team perugino, che è stato ampiamente riconosciuto a livello internazionale e che ci vede coinvolti nel management sia del progetto Virgo, sia del nuovo esperimento  giapponese ‘Kagra’, guidato da Takaaki Kajita, premio Nobel per la Fisica nel 2015 e laureato honoris causa del nostro Ateneo. Del nostro gruppo, inoltre – aggiunge Vocca – fa parte anche il dottor Michele Punturo, della sezione INFN di Perugia, attualmente Principal Investigator dell’esperimento ‘Einstein Europe’, il futuro detector europeo per le onde gravitazionali.

Il team di Perugia possiede competenze uniche al mondo – spiega il professor Vocca – in particolare sulle sospensioni degli specchi degli interferometri. In virtù di questa altissima specializzazione, stiamo lavorando insieme ad altri colleghi di vari Paesi europei e giapponesi per creare un laboratorio internazionale proprio a Perugia o comunque in Umbria, al fine di sfruttare le ricadute tecnologiche dei rilevatori di onde gravitazionali in altri settori, quali ad esempio quello del rischio sismico, affinché le avanzatissime tecnologie utilizzate nello spazio servano al miglioramento della vita dei cittadini.

Il tutto, inoltre, – conclude il professor Helios Vocca – avrà un’importante valenza per i nostri studenti: stiamo infatti puntando a costruire, in questo ambito scientifico, un’offerta didattica innovativa interuniversitaria, ovvero corsi di laurea realizzati in partnership con altri Atenei del centro-Italia, per dar vita a una ‘scuola’ che sia davvero unica persino a livello internazionale”.

Roberto Rettori

“In questo periodo di emergenza, nel rispetto delle direttive ministeriali, l’Università degli Studi di Perugia non ha mai interrotto né l’attività didattica né quella di ricerca – ha sottolineato il professore Roberto Rettori -. L’esperimento Virgo, che per l’unità di Perugia è coordinato dal professor Helios Vocca del Dipartimento di Fisica e Geologia, ne è una chiara dimostrazione.

I risultati che i nostri eccellenti ricercatori ottengono in tutte le discipline, permettono al nostro Ateneo di crescere e sempre di più diventare un punto di riferimento in Italia e nel mondo, promuovendo quindi Perugia e il suo territorio. Attraverso le numerose iniziative di divulgazione della ricerca che stiamo organizzando in tutta la regione, l’Università degli Studi di Perugia esce dalle sue mura, arriva alla popolazione e diventa suo patrimonio da difendere e valorizzare. Ringrazio il Magnifico Rettore, Professore Maurizio Olivieroper il supporto costante che offre a tali iniziative nonché tutti i colleghi per il loro lavoro. L’Ateneo di Perugia è soprattutto il luogo accogliente della conoscenza dove i giovani possono realizzare le loro passioni e costruire il loro futuro”.

La Sala Dessau all’Università di Perugia

Perugia, 2 settembre 2020

 

Virgo e LIGO svelano nuove e inattese popolazioni di buchi neri

Helios Vocca e Roberto Rettori

Virgo e LIGO hanno annunciato l’osservazione della fusione di un sistema binario di massa straordinariamente grande: due buchi neri di 66 e 85 masse solari, hanno prodotto alla fine un buco nero di circa 142 masse solari. Il buco nero finale è il più massiccio rivelato finora per mezzo delle onde gravitazionali. Si trova in una regione di massa entro cui non è mai stato osservato prima un buco nero, né con onde gravitazionali né con osservazioni elettromagnetiche, e potrebbe servire a spiegare la formazione dei buchi neri supermassicci. Inoltre, il componente più pesante del sistema binario iniziale si trova in un intervallo di massa proibito dalla teoria dell’evoluzione stellare e rappresenta una sfida per la nostra comprensione degli stadi finali della vita delle stelle massicce.

Gli scienziati delle collaborazioni internazionali che sviluppano e utilizzano i rivelatori Advanced Virgo presso lo European Gravitational Observatory (EGO) in Italia e i due Advanced LIGO negli Stati Uniti hanno annunciato l’osservazione di un buco nero di circa 142 masse solari, che è il risultato finale della fusione di due buchi neri di 66 e 85 masse solari. I componenti primari e il buco nero finale si trovano tutti in un intervallo di massa mai visto prima, né con onde gravitazionali né con osservazioni elettromagnetiche. Il buco nero finale è il più massiccio rivelato finora per mezzo di onde gravitazionali. L’evento di onda gravitazionale è stato osservato dai tre interferometri della rete globale il 21 maggio 2019. Il segnale (chiamato GW190521) è stato analizzato dagli scienziati, che stimano che la sorgente disti circa 17 miliardi di anni luce dalla Terra. Due articoli scientifici che riportano la scoperta e le sue implicazioni astrofisiche sono stati pubblicati oggi su Physical Review Letters e Astrophysical Journal Letters,
rispettivamente.

“Il segnale osservato il 21 maggio dello scorso anno è molto complesso e, dal momento che il sistema è così massiccio, lo abbiamo osservato per un tempo molto breve, circa 0.1 s”, dice Nelson Christensen, directeur de recherche CNRS presso ARTEMIS a Nizza in Francia e membro della Collaborazione Virgo. “Non assomiglia molto ad un sibilo che cresce rapidamente in frequenza, che è il tipo di segnale che osserviamo di solito: assomiglia piuttosto ad uno scoppio, e corrisponde alla massa più alta mai osservata da LIGO e Virgo.” Effettivamente, l’analisi del segnale – basata su una potente combinazione di modernissimi modelli fisici e di metodi di calcolo – ha rivelato una gran quantità di informazione su diversi stadi di questa fusione davvero unica.

Questa scoperta è senza precedenti non solo perché stabilisce il record di massa tra tutte le osservazioni fatte finora da Virgo e LIGO ma anche perché possiede altre caratteristiche speciali. Un aspetto cruciale, che ha attratto in particolare l’attenzione degli astrofisici, è che il residuo finale appartiene alla classe dei cosiddetti “buchi neri di massa intermedia” (da cento a centomila masse solari). L’interesse verso questa popolazione di buchi neri è collegato ad uno degli enigmi più affascinanti e intriganti per astrofisici e cosmologi: l’origine dei buchi neri supermassicci. Questi mostri giganteschi, milioni di volte più pesanti del Sole e spesso al centro delle galassie, potrebbero essere il risultato della fusione di buchi neri di massa intermedia.

Fino ad oggi, pochissimi esempi di questa categoria sono stati identificati unicamente per mezzo di osservazioni elettromagnetiche, e il residuo finale di GW190521 è la prima osservazione di questo genere per mezzo di onde gravitazionali. Ed è di interesse ancora maggiore, visto che si trova nella regione tra 100 e 1000 masse solari, che ha rappresentato per molti anni una specie di “deserto dei buchi neri”, a causa della scarsità di osservazioni in questo intervallo di massa.

I componenti e la dinamica della fusione del sistema binario che ha prodotto GW190521 offrono spunti astrofisici straordinari. In particolare, il componente più massiccio rappresenta una sfida per i modelli astrofisici che descrivono il collasso in buchi neri delle stelle più pesanti, quando queste arrivano alla fine della loro vita. Secondo questi modelli, stelle molto massicce vengono completamente distrutte dall’esplosione di supernova, a causa di un processo chiamato “instabilità di coppia”, e si lasciano dietro solo gas e polveri cosmiche. Perciò gli astrofisici non si aspetterebbero di osservare alcun buco nero nell’intervallo di massa tra 60 e 120 masse solari: esattamente dove si trova il componente più massiccio di GW190521. Quindi, questa osservazione apre nuove prospettive nello studio delle stelle massicce e dei meccanismi di supernova.

“Parecchi scenari predicono la formazione di buchi neri nel cosiddetto intervallo di massa di instabilità di coppia: potrebbero risultare dalla fusione di buchi neri più piccoli o dalla collisione multipla di stelle massicce o addirittura da processi più esotici”, dice Michela Mapelli, professore presso l’Università di Padova, e membro dell’INFN Padova e della Collaborazione Virgo. “Comunque, è possibile che si debba ripensare la nostra attuale comprensione degli stadi finali della vita di una stella e i conseguenti vincoli di massa sulla formazione dei buchi neri. In ogni caso, GW190521 è un importante contributo allo studio della formazione dei buchi neri.”

Infatti, l’osservazione di GW190521 da parte di Virgo e LIGO porta la nostra attenzione sull’esistenza di popolazioni di buchi neri che non sono mai stati osservati prima o sono inattesi, e in tal modo solleva nuove intriganti domande sui meccanismi con cui si sono formati. A dispetto del segnale insolitamente breve, che limita la nostra capacità di dedurre le proprietà astrofisiche della sorgente, le analisi più avanzate e i modelli attualmente disponibili suggeriscono che i buchi neri iniziali avessero alti valori di spin, o in altre parole che avessero un’elevata velocità di rotazione.

“Il segnale mostra segni di precessione, una rotazione del piano orbitale prodotta da spin elevati e con un’orientazione particolare”, nota Tito Dal Canton, ricercatore del CNRS presso IJCLab ad Orsay, Francia, e membro della Collaborazione Virgo, “L’effetto è debole e non possiamo esserne certi del tutto, ma se fosse vero darebbe forza all’ipotesi che i buchi neri progenitori siano nati e vissuti in un ambiente cosmico molto dinamico e affollato, come un ammasso stellare denso o il disco di accrescimento di un nucleo galattico attivo.”

Parecchi scenari diversi sono compatibili con questi risultati e anche l’ipotesi che i progenitori della fusione possano essere buchi neri primordiali non è stata scartata dagli scienziati. Effettivamente, noi stimiamo che la fusione abbia avuto luogo 7 miliardi di anni fa, un tempo vicino alle epoche più
antiche dell’Universo.

Rispetto alle precedenti osservazioni di onde gravitazionali, il segnale di GW190521 è molto breve e più difficile da analizzare. La complessa natura di questo segnale ci ha spinto a considerare anche altre sorgenti più esotiche, e queste possibilità sono descritte in un altro articolo che accompagna quello della scoperta. La fusione di un sistema binario di buchi neri resta però l’ipotesi più
probabile.

“Le osservazioni portate avanti da Virgo e LIGO illuminano l’universo oscuro e definiscono un nuovo panorama cosmico”, dice Giovanni Losurdo, che guida Virgo ed è dirigente di ricerca presso l’Istituto Nazionale di Fisica Nucleare in Italia, “E oggi, ancora una volta, annunciamo una scoperta senza precedenti. Continuiamo a migliorare i nostri strumenti per aumentare la loro performance e
per vedere sempre più a fondo nell’Universo.”

Informazioni aggiuntive sugli osservatori di onde gravitazionali:

La Collaborazione Virgo è composta attualmente da circa 580 membri provenienti da 109 istituzioni in 13 diversi paesi, che comprendono Belgio, Francia, Germania, Grecia, Irlanda, Italia, Olanda, Polonia, Portogallo, Spagna e Ungheria. Lo European Gravitational Observatory (EGO) che ospita il rivelatore Virgo si trova vicino a Pisa in Italia ed è finanziato dal Centre National de la Recherche Scientifique (CNRS) in Francia, dall’Istituto Nazionale di Fisica Nucleare (INFN) in Italia, e dal Nikhef in Olanda. Una lista dei gruppi della Collaborazione Virgo è disponibile al link http://public.virgo-gw.eu/the-virgo-collaboration/ . Ulteriori informazioni sono disponibili sul sito web di Virgo http://www.virgo-gw.eu

.LIGO è finanziato dalla National Science Foundation (NSF) e la sua operatività dipende da Caltech e MIT, che hanno concepito e guidato il progetto. Il sostegno finanziario per il progetto Advanced LIGO è venuto dall’NSF, con significativi impegni e contributi da parte tedesca (Max Planck Society), inglese (Science and Technology Facilities Council) e australiana (Australian Research Council-OzGrav). Circa 1300 scienziati di tutto il mondo partecipano all’impresa scientifica della Collaborazione LIGO, che include anche la Collaborazione GEO. Una lista di altri partners è disponibile al link https://my.ligo.org/census.php
.

I RICERCATORI DI PERUGIA A CACCIA DELLE ONDE GRAVITAZIONALI

Un’esperienza ventennale nella descrizione teorica e nello sviluppo di tecnologie per osservare le onde gravitazionali che ha condotto anche a ricadute tecnologiche nel campo delle energie rinnovabili.

onde gravitazionali Virgo LIGO
Helios Vocca e Roberto Rettori

Il gruppo di scienziati di Perugia che lavora all’esperimento Virgo per la rivelazione e lo studio di onde gravitazionali fa parte del Dipartimento di Fisica e Geologia dell’Università di Perugia e della Sezione di Perugia dell’INFN e da circa trent’anni si occupa de i rivelatori delle Onde Gravitazionali. Il gruppo si occupa per lo più di elabora re modelli teorici e tecniche sperimentali per studiare la dinamica dei sistemi fisici non lineari e in particolare p er lo studio del rumore. Si tratta cioè di conoscere le caratteristiche e saper limitare o utilizzare in modo efficiente tutte qu elle vibrazioni che popolano i fenomeni naturali, dalle vibrazioni delle molecole e degli atomi dovute alla temperatura alle vibrazioni macroscopiche che potrebbero disturbare la rivelazione dei segnali che arrivano dal cosmo e che l’esperimento Virgo rivela. Oltre a questo negli ultimi anni ha acquisito competenze di ottica quantistica, di data analisi e modelli stica della Relatività Generale per sistemi compatti.

Il gruppo di ricerca perugino attivo nell’esperimento Virgo è coordinato dal Prof. Helios Vocca (attualmente nel Management Team sia dell’esperimento europeo Virgo che dell’esperimento giapponese Kagra). Sono nel complesso 12, tra scienziati e tecnici, le persone del Dipartimento di Fisica e della Sezione di Perugia dell’Istituto Nazionale di Fisica Nucleare che costituiscono il team coinvolto nell’osservazione e nell’analisi dei dati raccolti sulle onde gravitazionali; fra loro anche il Dott. Michele Punturo responsabile del gruppo di ricerca astroparticellare per la sezione INFN di Perugia e attualmente Principal Investigato dell’esperimento Einstein Telescope, futuro detector europeo per le Onde Gravitazionali.

Le abilità acquisite dal team perugino nello studio delle vibrazioni, da quelle microscopiche a quelle più grandi, ha consentito di apportare un contributo essenziale ai metodi utilizzati per istallare gli specchi e il complesso dei sistemi ottici, cuore dello strumento per l’osservazione delle onde gravitazionali: l’interferometro Virgo. Il rivelatore Virgo istallato a Cascina, nelle campagne poco fuori Pisa, è costituito da due lunghi tubi di tre chilometri l’uno, disposti perpendicolarmente tra loro a formare una elle. All’interno di questi tubi si fa il vuoto e viene fatto correre un raggio laser avanti e indietro attraverso un sistema di specchi. È proprio lo spostamento degli specchi al passaggio dell’onda gravitazionale che ne rileva la presenza. Di conseguenza è cruciale la realizzazione di queste parti dell’apparato. Attraverso una conoscenza accurata del rumore termico, ovvero delle vibrazioni degli atomi e delle molecole che costituisco i materiati di cui sono fatte le parti del rivelatore Virgo, il gruppo di Perugia ha fatto sì che il segnale delle onde gravitazionali non si confondesse con altri disturbi provenienti dall’ambiente. Il gruppo di Perugia si è occupato, sin dalla nascita del progetto Virgo, dello sviluppo del sistema per sospendere gli specchi all’interno delle torri dell’esperimento. Tale sistema è unico perché consente allo specchio di poter oscillare dissipando pochissima energia e quindi rendendolo estremamente sensibile alla rivelazione dei segnali gravitazionali. Il pendolo è costituito da sottilissimi fili prima di acciaio, ora di un particolare vetro: il quarzo fuso. Insieme ai fili è stato ideato e realizzato un sistema originale di ancoraggio degli specchi attraverso tecniche innovative d’incollaggio delle componenti del rivelatore sviluppate tra i laboratori di Perugia e quelli di Glasgow. Queste tecnologie sono alla base dell’aumento di sensibilità che caratterizza il cosiddetto Advanded Virgo.

Le abilità tecniche e le conoscenze teoriche acquisite in questi trent’anni dai fisici dell’Università di Perugia, coinvolti nel progetto Virgo, ha consentito al gruppo di entrare da protagonista anche nell’esperimento giapponese, Kagra (esperimento guidato da una vecchia conoscenza dell’Ateneo perugino, il Prof. Takaaki Kajita premio Nobel in Fisica nel 2015, al quale nel 2017 è stata riconosciuta la laurea Honoris Causa) trasferendo le proprie competenze alla collaborazione asiatica per la realizzazione delle sospensioni criogeniche in zaffiro delle ottiche del rivelatore.

 

 

Testi e foto dall’Ufficio Stampa Università di Perugia

Articolo a cura di Silvia Giomi e Piero Paduano

L’Universo in cui viviamo ci è in gran parte ignoto. La materia di cui siamo fatti noi, i pianeti, le stelle e tutti gli oggetti che osserviamo – e quindi conosciamo – ne costituisce meno del 5%. La restante parte dell’Universo è energia oscura (70%) e materia oscura (25%). Quest’ultima è detta “oscura” poiché, non emettendo radiazione elettromagnetica, rimane invisibile ai nostri strumenti, ma la sua presenza si rivela per via degli effetti gravitazionali osservati.

La ricerca delle particelle di materia oscura è una sfida che coinvolge da anni la comunità scientifica che si cimenta in esperimenti di osservazione diretta (in laboratori sotterranei come CERN, LNGS) e indiretta (nello spazio).

Tra i metodi indiretti vi è quello che sfrutta il fenomeno della superradianza dei buchi neri, esplorato approfonditamente nell’articolo Black hole superradiant instability from ultralight spin-2 fields, pubblicato sulla rivista Physical Review Letters.

Tale metodo è estremamente interessante anche perché si inserisce nel contesto della LGQ (Loop Quantum Gravity), teoria che cerca di unificare la meccanica quantistica e la relatività generale.

Abbiamo il piacere e l’onore di parlarne con il professor Paolo Pani, associato in Fisica Teorica presso il Dipartimento di Fisica della Sapienza Università di Roma, tra i protagonisti dello studio.

instabilità per superradianza Paolo Pani buchi neri materia oscura
Il buco nero supermassiccio nel nucleo della galassia ellittica Messier 87 nella costellazione della Vergine. Si tratta della prima foto diretta di un buco nero, realizzata dal progetto internazionale Event Horizon Telescope. Foto modificata Event Horizon TelescopeCC BY 4.0

 

In cosa consiste l’instabilità per superradianza, e in che modo la sfruttate per la vostra indagine?

La superradianza è un fenomeno che avviene in molti sistemi fisici quando un’onda riflessa da un oggetto viene amplificata a scapito dell’energia dell’oggetto stesso. Questo avviene anche per un buco nero, che può amplificare le onde elettromagnetiche o gravitazionali che “sbattono” su di esso. L’energia in eccesso viene presa dalla velocità di rotazione dell’oggetto, che diminuisce.

L’instabilità per superradianza è un fenomeno collegato: se le particelle del campo elettromagnetico (fotoni) o del campo gravitazionale (gravitoni) avessero una seppur minuscola massa, la radiazione amplificata per superradianza rimarrebbe intrappolata vicino al buco nero, generando un effetto a cascata che rallenta il buco nero fino quasi a fermare completamente la sua rotazione.

In questo caso l’energia in eccesso viene emessa in onde gravitazionali la cui frequenza è direttamente collegata all’ipotetica massa del campo. Se queste particelle ultraleggere esistessero, quindi, non dovremmo osservare buchi neri rotanti e ciascun buco nero si comporterebbe come un “faro” di onde gravitazionali.

 

Il fenomeno della superradianza ha qualche connessione con la radiazione di Hawking?

Sì, si può dire che la superradianza è la controparte “classica” della radiazione di Hawking, che è invece un effetto “quantistico”. La superradianza richiede che il buco nero ruoti, mentre nel caso della radiazione di Hawking il buco nero può rimanere statico. In questo caso la radiazione viene emessa spontaneamente, a scapito della massa del buco nero.

 

Può spiegarci quali sono i vantaggi di aver esteso il fenomeno al caso di campo tensoriale rispetto allo scalare e al vettoriale?

Il caso di campo tensoriale è strettamente collegato ad alcune teorie che prevedono una massa minuscola per il gravitone, una proprietà che potrebbe risolvere il problema della costante cosmologica e dell’energia oscura responsabile dell’espansione accelerata dell’universo.

Inoltre, campi tensoriali ultraleggeri sono ottimi candidati per spiegare la materia oscura che sembra permeare il cosmo ma che finora non si è riusciti a misurare in laboratorio. Il nostro studio mostra che i segnali di onde gravitazionali presenti e futuri permettono di ricercare queste particelle anche quando la loro massa è troppo piccola per essere vista in esperimenti terrestri, come negli acceleratori di particelle.

 

I vostri risultati sono condizionati dalla scelta della metrica di Kerr?

Nella teoria della gravitazione di Einstein, la relatività generale, la metrica di Kerr è l’unica possibile per descrivere un buco nero astrofisico. Nelle teorie che menzionavo sopra, tuttavia, possono esistere altre soluzioni che descrivono buchi neri differenti.

Nel nostro studio abbiamo fatto l’ipotesi standard che i buchi neri siano descritti dalla metrica di Kerr. Scelte differenti renderebbero i calcoli più laboriosi ma ci aspettiamo che non modifichino sostanzialmente il risultato: in presenza di campi ultraleggeri tutti i buchi neri rotanti sono instabili per superradianza ed emettono onde gravitazionali.

 

Quali porte si stanno aprendo e/o quali si stanno chiudendo sulla ricerca della materia oscura?

Il problema della materia oscura è che sappiamo davvero poco su di essa, e quindi svariate speculazioni teoriche sono possibili. Nel corso dei decessi alcuni modelli teorici sono divenuti più popolari di altri, ma l’ultima parola ce l’ha sempre l’esperimento: finché non scopriremo tracce di materia oscura oltre quelle ben note, non sarà possibile distinguere diversi modelli.

Gli esperimenti attuali atti a ricercare uno dei candidati più promettenti (le cosidette WIMPS, weakly interacting massive particles) hanno raggiunto precisioni tali che possono quasi escludere questa ipotesi. Un altro candidato molto promettente sono gli assioni, che sono appunto particelle ultraleggere che producono l’instabilita’ di superradianza dei buchi neri.

Penso che la risposta al problema della materia oscura arriverà da esperimenti innovativi, o magari proprio dai buchi neri, tramite segnali inaspettati di onde gravitazionali.

 

 

Riferimenti allo studio su instabilità per superradianza, buchi neri, materia oscura:

Black Hole Superradiant Instability from Ultralight Spin-2 Fields – Richard Brito, Sara Grillo, and Paolo Pani – Phys. Rev. Lett. 124, 211101 – Published 27 May 2020 DOI:https://doi.org/10.1103/PhysRevLett.124.211101