News
Ad
Ad
Ad
Tag

Biologia molecolare

Browsing

DOPPIAVPROJECT, 10.000 EURO RACCOLTI DAL PROGETTO CHE STUDIA LE BASI GENETICHE DELLA VULVODINIA

Il crowdfunding, promosso dalla ricercatrice UniTo Valentina Proserpio e sostenuto dall’influencer Giorgia Soleri, andrà a finanziare nuovi studi sulla patologia che colpisce una donna su sette.

DoppiaVproject

DoppiaVproject, il progetto di ricerca che si occupa di studiare le basi genetiche della vulvodinia, ha raccolto oltre 10.000 euro sulla piattaforma di crowdfunding ideaginger.it. In meno di un mese dal suo lancio, oltre 200 sostenitori hanno contribuito alla raccolta fondi che mira a raggiungere i 20.000 euro entro il 9 gennaio 2023. L’iniziativa è stata lanciata dal Doppiavproject team – composto da Valentina Proserpio, biologa molecolare, ricercatrice del Dipartimento di Scienze della Vita e Biologia dei Sistemi UniTo, Antonella Managò, biologa molecolare, Emilia Fusi, designer di gioielli e Silvia Fiamberti, graphic designer – e sostenuta dall’attivista e influencer Giorgia Soleri.

Giorgia Soleri

Lo scopo di DoppiaVproject è comprendere le cause e approfondire gli aspetti molecolari della vulvodinia, utilizzando la biologia molecolare per analizzare le pazienti con le tecniche più avanzate disponibili nei laboratori dell’Università di Torino. In particolare, i fondi raccolti verranno utilizzati per leggere con tecniche di genomica avanzata (NGS) il materiale genetico delle cellule delle pazienti,  per spiegare gli aspetti molecolari di questa patologia e scoprirne i marcatori diagnostici.

L’obiettivo è arrivare a realizzare un test per la vulvodinia molto simile a quello oggi in uso per il COVID-19. Avere una diagnosi veloce consentirebbe non solo di limitare il peggioramento dei sintomi dovuto al ritardo diagnostico, ma anche di ridurre notevolmente i costi che le pazienti affrontano quotidianamente. Inoltre, aiuterebbe il processo di riconoscimento della malattia da parte del Sistema Sanitario Nazionale.

Il progetto mira a sensibilizzare e far conoscere la vulvodinia. Sebbene sia ancora sconosciuta ai più, questa patologia colpisce 1 donna su 7. Si presenta come un dolore vulvare senza un’origine identificabile, che compromette la vita sessuale delle donne e può influenzare le normali azioni quotidiane, come urinare, sedersi, indossare collant, fare sport o camminare. Per questa malattia, ad oggi, mancano i marcatori molecolari per la diagnosi, dunque la possibilità di essere identificata velocemente.

“Sostengo questa importante raccolta fondi perché ad oggi lo Stato non finanzia alcuna ricerca sulla vulvodinia, rendendo complessa la diagnosi e la conseguente terapia. È invece fondamentale saperne di più per poter curare in modo sempre più efficace chi ne soffre”, ha dichiarato Giorgia Soleri per promuovere l’iniziativa.

Testo e immagini dall’Area Relazioni Esterne e con i Media dell’Università degli Studi di Torino

UNITO GUIDA UN PROGETTO INTERNAZIONALE
SULLA COMUNICAZIONE TRA PIANTE E IMPOLLINATORI

Come reagiscono le piante ai suoni emessi dagli insetti che ne visitano i fiori? Sono in grado di riconoscere i diversi visitatori in base alla loro firma acustica? Sono solo alcune delle domande a cui la ricerca, sostenuta da Human Frontiers Science Program, vuole dare risposta.

Progetto internazionale sulla comunicazione tra piante e impollinatori
Progetto internazionale sulla comunicazione tra piante e impollinatori

Due ricercatori dell’Università di TorinoFrancesca Barbero e Luca P. Casacci – docenti presso il Dipartimento di Scienze della Vita e Biologia dei Sistemi –, guideranno un gruppo di ricerca internazionale impegnato nel progetto Good Vibes: how do plants recognise and respond to pollinator vibroacoustic signals?, finanziato dallo Human Frontiers Science Program Award.

Good Vibes vuole scoprire i meccanismi molecolari e fisiologici delle risposte delle piante ai segnali vibroacustici emessi dagli insetti. I ricercatori utilizzeranno le bocche di leone (Antirrhinum spp.) e gli insetti che ne visitano i fiori come modello di studio. Durante il volo, questi insetti producono suoni differenti a seconda della specie, una sorta firma acustica, e possono fungere da efficienti impollinatori o sfruttare le risorse della pianta sottraendo nettare senza contribuire al trasferimento del polline e dunque al potenziale riproduttivo delle bocche di leone.

L’ipotesi principale che i ricercatori vogliono verificare è se le piante siano in grado di discriminare i diversi insetti visitatori dei fiori sulla base della loro firma acustica e di reagire con risposte atte a incrementare l’attrattività e la fedeltà alla pianta soltanto nel caso in cui siano visitate da impollinatori efficienti.

Più in generale, i risultati ottenuti tramite un approccio multidisciplinare che combina etologiabioacusticabiologia vegetalebiologia molecolareingegneriafisica modellistica permetteranno di rispondere, almeno in parte, ad alcune domande fondamentali: come reagiscono le piante ai suoni emessi dagli insetti che ne visitano i fiori? Nel corso dell’evoluzione, forma e materiali florali possono essere stati determinati anche dall’esigenza di migliorare la propagazione dei segnali vibroacustici? Perché la comunicazione vibroacustica si è evoluta nelle piante?

L’intento di Good Vibes è colmare le lacune nella conoscenza delle dinamiche complesse dei sistemi pianta-impollinatori affrontandone lo studio da una prospettiva completamente nuova. Il progetto coinvolgerà tre unità: Insect-Behaviour Unit guidata da Francesca Barbero (Università di Torino, Italia), Engineering-Modelling Unit guidata da Sebastian Oberst (University of Technology Sydney, Australia) e Plant-Physiology Unit guidata da J. Tomás Matus, ricercatore del programma Ramon y Cajal (Università di Valencia) presso I2SysBio (UV-CSIC).

L’ente internazionale Human Frontier Science Program Organization (HFSPO) ha stanziato 37 milioni di dollari per sostenere il 4% dei migliori progetti di ricerca HFSP nei prossimi 3 anni. I vincitori dell’anno 2022 hanno superato un rigoroso processo di selezione durato un anno, che ha visto la partecipazione di 716 proposte da parte di ricercatori di oltre 50 diversi paesi. Tra questi sono stati selezionati 7 progetti dedicati a giovani ricercatori e 25 progetti senior. Il finanziamento del progetto Good Vibes ammonta a 1.140.000 dollari e avrà una durata di tre anni.

 

Testo e foto dall’Ufficio Stampa dell’Università degli Studi di Torino

Come la vita e il nostro Pianeta sono evoluti insieme

Parte il progetto CoEvolve: indaga la coevoluzione della vita con la Terra

CoEvolve indaga la coevoluzione della vita con la Terra

CoEvolve, il progetto finanziato dal Consiglio Europeo delle Ricerche, guidato dal microbiologo della Federico II di Napoli, Donato Giovannelli, è ufficialmente decollato. Il progetto condurrà il team del Giovannelli-Lab dall’Artico ai deserti delle Ande cilene, e poi dal Costa Rica all’Islanda, alla ricerca di microrganismi che verranno raccolti negli ambienti estremi del nostro pianeta per capire come la Terra e la vita si sono mutualmente influenzati, in una sorta di coevoluzione tra la geosfera e la biosfera terrestre.

‘Quando guardiamo il nostro pianeta tendiamo a pensare che la geologia sia una forza inarrestabile che modella i continenti e gli oceani, e che la vita si adatti a questi cambiamenti ed evolva per tenere il passo. Questo è vero per la maggior parte del tempo, ma ci sono state diverse occasioni durante la storia della Terra in cui l’evoluzione di alcuni processi biologici hanno influenzato notevolmente la geologia, la mineralogia e quindi la traiettoria evolutiva della Terra’ – spiega il coordinator Donato Giovannelli. La realtà è che il nostro pianeta e la vita si sono coevoluti nel tempo, influenzandosi a vicenda per oltre 4 miliardi di anni. ‘È come una delicata danza in cui la vita e il pianeta Terra lavorano insieme per mantenere l’abitabilità del pianeta e sostenere la vita stessa’, dice Donato Giovannelli. Nonostante questo, l’estensione della coevoluzione e le sue forze motrici sono in gran parte sconosciute’.

Il progetto CoEvolve mira a capire come la vita, in particolare i microrganismi, e il pianeta si sono coevoluti nel tempo, concentrandosi sul ruolo dei metalli. Il progetto è finanziato con una sovvenzione di 2,1 milioni di euro dal Consiglio Europeo della Ricerca (ERC Starting Grant 2020).

I microrganismi sono fondamentali per il funzionamento del pianeta e sono stati la forza trainante nel ciclo dei nutrienti e degli elementi dall’origine della vita su questo pianeta. Per controllare il ciclo dei nutrienti e degli elementi, i microrganismi utilizzano un insieme di proteine che contengono metalli nel loro nucleo, utilizzati per controllare efficacemente le reazioni chimiche. A causa di questa relazione, il ruolo dei metalli è importante per la vita (basti pensare solo a cosa comporta un calo di ferro nel sangue).

‘Le conoscenze degli ultimi decenni sulla evoluzione della vita terrestre ci ha fatto comprendere che la disponibilità di metalli è cambiato drammaticamente nel tempo, in gran parte a causa del cambiamento delle concentrazioni di ossigeno nell’atmosfera – sottolinea Giovannelli -. In sintesi, metalli potrebbero aver controllato in una certa misura l’evoluzione della vita microbica stessa’.

Il progetto CoEvolve utilizza microrganismi raccolti in ambienti estremi, dai poli ai deserti, che sono una sorta di modello di antichi tempi geologici, per capire la relazione tra disponibilità di metallo e metabolismo microbico. Una selezione di ambienti diversi, da sorgenti termali negli altipiani del Cile all’Artico norvegese, saranno campionati nei prossimi 5 anni in una serie di missioni la cui delicata logistica richiede una lunga e attenta pianificazione.

CoEvolve coevoluzione
CoEvolve indaga la coevoluzione della vita con la Terra

Donato Giovannelli, dunque, sta raccogliendo nel Giovannelli-Lab un team di scienziati e scienziate con diversi background per affrontare la natura multidisciplinare del progetto CoEvolve, che richiede competenze in microbiologia, biologia molecolare, geochimica, geologia, astrobiologia e big data. La prima fase del progetto è attualmente in corso, con l’allestimento di un nuovo laboratorio geo-bio presso l’Università di Napoli Federico II, e a partire dal 20 febbraio 2022, il team comincia con la prima tappa delle missioni: presso la base artica Dirigibile Italia del CNR (Isole Svalbard, Norvegia) a Ny-Ålesund  (78°55′ N, 11°56′ E). La prima spedizione, i cui dati contribuiranno al CoEvolve, è finanziata con un Progetto di Ricerca in Artico del MUR.

“La mia speranza è che il progetto cambierà il modo in cui comprendiamo e interagiamo con il mondo microbico, aprendo nuove strade in diversi campi come la bioremediation, le biotecnologie e la ricerca sul microbioma umano e potrebbe anche cambiare il modo in cui cerchiamo la vita nell’Universo”, conclude Donato Giovannelli.

 

CoEvolve in breve:

–        Al via il progetto CoEvolve del Dipartimento di Biologia della Federico II di Napoli. Durerà 5 anni, beneficia di un finanziamento ERC europeo di 2.1 milioni di euro. Alla sua guida il microbiologo Donato Giovannelli.

–        Studierà organismi di ambienti estremi, raccolti in Cile, Islanda, Norvegia, Russia, Italia, Costa Rica, per comprendere come la geologia terrestre ha influenzato la vita, e come la vita, a modo suo, abbia a sua volta influenzato la geologia.

–        La prima tappa, in atto in questo momento, alle Isole Svalbard, in Norvegia, presso la base artica del CNR Dirigibile Italia. Il team di microbiologi raccoglierà microorganismi adattati ad un ambiente estremamente freddo.

 

Testo e foto dall’Ufficio Stampa Università Federico II di Napoli.

PUBBLICATA SU “SCIENCE” LA SCOPERTA DI UNA DELLE CAUSE DELL’INVECCHIAMENTO

Uno studio dei ricercatori del Centro di Biotecnologie Molecolari dell’Università di Torino, guidati dal Prof. Emilio Hirsch, svela nuovi elementi chiave dei processi di invecchiamento. La ricerca può avere ricadute imprevedibili: dalla comprensione dei meccanismi del cancro al contrasto al COVID-19.

Emilio Hirsch cause invecchiamento
Emilio Hirsch

Perché ognuno di noi invecchia? È una domanda chiave della biologia molecolare, ma una risposta precisa ancora manca. Non sappiamo se l’invecchiamento sia incontrastabile o se sia un fenomeno mitigabile. Tuttavia oggi è noto che le cellule del nostro corpo possono seguire un programma di cambiamento, chiamato senescenza, che se attivato porta all’invecchiamento prima a livello cellulare e poi dell’organismo intero. Chiarire cosa scateni questo fenomeno è una delle sfide più straordinarie del nostro tempo.

I ricercatori del Centro di Biotecnologie Molecolari dell’Università di Torino guidati dal Prof. Emilio Hirsch hanno aggiunto un sostanziale tassello alla soluzione di questo enigma, in uno studio i cui risultati sono stati pubblicati sulla prestigiosa rivista americana Science, una delle più autorevoli al mondo in campo scientifico. Lo studio, sostenuto da Fondazione AIRC per la ricerca sul cancro, prende le mosse da precedenti risultati ottenuti nell’ambito della ricerca sul cancro e suggerisce per la prima volta che la senescenza può essere scatenata da specifici difetti della proliferazione cellulare.

Due proteine, chiamate PI3K-C2alpha e VPS36, sono state identificate come elementi necessari perché una cellula possa dividersi in due cellule figlie. Quando la concentrazione di queste proteine diminuisce, le cellule si duplicano con difficoltà, rallentando i tempi di separazione necessaria perché le due cellule prodotte dalla duplicazione si stacchino l’una dall’altra, tanto da diventare due entità autonome. I dottori Federico Gulluni e Lorenzo Prever, insieme al gruppo di ricerca guidato dal professor Emilio Hirsch, hanno scoperto che se il fenomeno di separazione rallenta, come quando PI3K-C2alpha e VPS36 sono meno abbondanti, si scatena il programma di senescenza e le cellule entrano in un nuovo stato, tipico dell’invecchiamento.

La lente dell’occhio, ovvero il cristallino, è risultata uno dei tessuti più sensibili alla diminuzione delle due proteine. Se ciò avviene, le cellule della lente scatenano il processo di senescenza causando un malanno comune e frequentissimo nell’anziano: la cataratta. Questa patologia consiste in una opacizzazione del cristallino, la lente che all’interno dell’occhio ci permette di mettere a fuoco le immagini del mondo circostante. Negli anziani è fortemente invalidante e, se non opportunamente trattata, è causa di grave impedimento visivo e disabilità. Nonostante la chirurgia offra delle soluzioni più che eccellenti, riuscire a prevenire questo fenomeno è un traguardo finora mai raggiunto, perché le cause dell’opacizzazione del cristallino non sono ancora chiare.

I dati pubblicati su Science aggiungono elementi volti a una più completa comprensione di questi meccanismi, indicando una strada mai precedentemente percorsa. I risultati ottenuti nascono dal connubio tra diverse esperienze di biologia cellulare e genetica e hanno coinvolto ricercatori in tutto il mondo, inclusi gli Stati Uniti, la Germania e Israele. L’idea centrale nasce dall’osservazione di una rarissima condizione genetica in una famiglia i cui bambini, nati con una deficienza genetica di PI3K-C2alpha, mostrano segni di invecchiamento precoce, tra cui la cataratta infantile. L’osservazione è stata poi confermata in pesci zebrafish (Danio rerio) geneticamente modificati che, sviluppando la cataratta, hanno dimostrato quanto questo meccanismo descritto per la prima volta sia radicato anche in organismi evolutivamente distanti dagli esseri umani.

Al di là dell’ambito oftalmologico, la ricerca torinese chiarisce un processo fondamentale dell’invecchiamento che potrà avere ricadute potenziali molto più ampie. Coinvolgendo la duplicazione cellulare e quindi la proliferazione, lo studio potrà aiutare a capire, innanzitutto, nuovi meccanismi del cancro, malattia anch’essa tipicamente associata all’invecchiamento. Come affermato dal professor Emilio Hirsch, che è anche Direttore Scientifico della Fondazione Ricerca Molinette:

“È evidente che la ricerca sull’invecchiamento non può che essere multidisciplinare. Come questo studio dimostra pienamente, i risultati della ricerca di base hanno ricadute imprevedibili e per questo finanziare la ricerca di eccellenza in questo settore è fortemente necessario. Le malattie dell’invecchiamento – espressione che comprende varie patologie, da quelle oncologiche a quelle neurodegenerative – hanno sempre alla base i meccanismi di invecchiamento cellulare. Per questa ragione la Fondazione ha focalizzato la propria mission proprio su queste malattie, promuovendo un bando per favorire lo sviluppo di ricerca traslazionale di eccellenza a Città della Salute e della Scienza”.

Le potenziali implicazioni di questa scoperta, poi, non sono finite qui: chiarendo il ruolo delle proteine PI3K-C2alpha e VPS36 nella separazione delle membrane cellulari, infatti, si potrebbero aggiungere nuove ipotesi di lavoro nel contrasto del COVID-19, anche lui in grado di riprodursi proprio grazie alle stesse proteine in questione.

 

Testo e foto dall’Ufficio Stampa dell’Università degli Studi di Torino

La ciber-genetica sincronizza gli orologi delle cellule. Lo rivela la ricerca targata Federico II e Tigem appena pubblicata su Nature Communications

Lo studio, che fa capo ai professori Diego di Bernardo e Mario di Bernardo, dimostra che le cellule possono essere indotte a sincronizzare il proprio ciclo cellulare da un computer attraverso una apposita “interfaccia”. Ciò consentirà, ad esempio, di studiare i meccanismi biologici alla base del ciclo cellulare, la cui regolazione è il principio di molti farmaci antitumorali.

Le cellule, quindi, diventano smart grazie alla ciber genetica.

ciber genetica cellule
Cellule di lievito osservate al microscopio durante un esperimento di sincronizzazione. I segnali in basso mostrano che tutte le cellule osservate crescono all’unisono grazie alla nuova tecnologia sviluppata

I risultati di questa nuova ricerca sono stati pubblicati sulla rivista Nature Communications dal gruppo di ricercatori guidato dal professore Diego di Bernardo del Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale dell’Università degli Studi di Napoli Federico II – DICMAPI e del TIGEM in collaborazione con il gruppo del professore Mario di Bernardo del Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione -DIETI della Federico II, nell’ambito del progetto europeo FET-OPEN H2020 “COSYBIO” (www.cosy-bio.eu).
La ricerca fortemente inter-disciplinare ricade nell’ambito della “ciber-genetica”, una nuovissima disciplina che integra l’ingegneria biomedica e la teoria dei sistemi nonlineari e dei controlli automatici con la biologia molecolare e cellulare al fine di costruire controllori automatici di processi biologici. Nello specifico i ricercatori hanno dimostrato che è possibile sincronizzare la replicazione cellulare in una popolazione di cellule interfacciandole con un computer, utilizzando tecniche di controllo simili a quelle utilizzate per la sincronizzazioni di reti e circuiti in ingegneria.
Questi nuovi sistemi “cibergenetici” potranno rivoluzionare nelle biotecnologie l’efficienza della produzione di farmaci biologici da cellule. Inoltre in un futuro non troppo lontano le stesse tecnologie potranno essere miniaturizzate per regolare processi biologici e dar vita a veri e proprio “ciberfarmaci” o smart drugs.
Alla ricerca hanno preso parte, tra gli altri, Sara Napolitano dottoranda presso il DICMAPI e Davide Fiore del Dipartimento di Matematica e Applicazioni sempre dell’Università Federico II.

 

L’articolo completo:
Automatic synchronisation of the cell cycle in budding yeast through closed-loop feedback control | Nature Communications

 Testo e immagine dall’Ufficio Stampa Università degli Studi di Napoli Federico II

Virus Herpes simplex per generare farmaci biologici contro il cancro

La scoperta dei ricercatori del CEINGE-Biotecnologie Avanzate di Napoli e del Dipartimento di Medicina Molecolare e Biotecnologie Mediche dell’Università Federico II, in collaborazione con la NousCom Srl, si è rivelata efficace in modelli preclinici di tumori della mammella

Herpes Simplex visualizzato con ChimeraX. Victor Padilla-Sanchez, PhD. Immagine Victoramuse, CC BY-SA 4.0

Il virus Herpes simplex si può utilizzare per generare farmaci biologici ad attività oncolitica su carcinomi mammari HER2-negativi, di cui fanno anche parte i cosiddetti tumori della mammella triplo-negativi (TNBC).

È quanto hanno svelato gli studi che da circa 5 anni a questa parte portano avanti i ricercatori del CEINGE-Biotecnologie avanzate di Napoli e del Dipartimento di Medicina Molecolare e Biotecnologie Mediche dell’Università Federico II, guidati da Nicola Zambrano, professore di Biologia molecolare, che nei laboratori del Centro di via Gaetano Salvatore lavora alla messa a punto proprio di nuove tecnologie per la selezione e la produzione di farmaci biologici per sperimentazioni precliniche.

Gli studiosi hanno generato, in collaborazione con la NousCom SRL, un virus erpetico capace di infettare selettivamente le cellule cancerose che espongono, sulla loro superficie, la mesotelina, un antigene tumorale frequentemente espresso nei tumori TNBC e nel mesotelioma pleurico.

«Herpes simplex appartiene ad una famiglia di virus con cui l’uomo convive da sempre – sottolinea il prof. Zambrano –, basti pensare alle comuni manifestazioni labiali che interessano tanti di noi, ed è molto ben conosciuto. Contro questo virus esistono anche dei farmaci per controllarne l’infezione. Tali caratteristiche lo hanno reso un modello di elezione per lo sviluppo di farmaci biologici ad attività antitumorale o, più precisamente, oncolitica».

«I vantaggi dei vettori virali da noi generati, validati mediante sperimentazione su cellule e in modelli preclinici – spiega Zambrano – risiedono nel corretto bilanciamento di efficacia nell’attivazione della risposta immunitaria anti-tumorale e della specificità oncolitica verso il tumore, con limitazione degli effetti fuori-bersaglio verso i tessuti normali. I nostri studi prevedono l’utilizzo di questi vettori virali in combinazione con l’immunoterapia dei tumori, che si sta sempre più affermando come il quarto presidio per le cure anticancro, in aggiunta alle terapie più invasive quali la chemioterapia, la radioterapia e la chirurgia».

Questo virus si aggiunge a quelli generati in collaborazione con l’Università di Bologna, per il targeting del cancro alla mammella di tipo HER2 positivo, ampliando di fatto il potenziale “arsenale” terapeutico nei confronti dei tumori mammari e non.

Oltre ad “educare” i virus per renderli efficaci e selettivi, il laboratorio del CEINGE diretto dal prof. Zambrano rappresenta una vera e propria palestra per numerosi studenti di Biotecnologie e dottorandi, che hanno la possibilità a di formarsi, a livello sia teorico che pratico, sull’utilizzo di metodologie e approcci innovativi della ricerca molecolare, in particolar modo per la cura dei tumori.

«Negli ultimi cinque anni abbiamo portato avanti studi per educare Herpes simplex a riconoscere selettivamente cellule tumorali, e a replicare esclusivamente in queste ultime, tralasciando le cellule normali. Il modello iniziale era basato sul riconoscimento di tumori mammari positivi ad HER2 e lo abbiamo migliorato nella selettività verso il tumore. Abbiamo poi generato un nuovo virus in grado di riconoscere anche tumori mammari negativi ad HER2, attraverso un diverso recettore, la mesotelina. Questo recettore potrebbe essere anche sfruttato per l’ingresso del nuovo virus oncolitico in cellule del mesotelioma, un tumore particolarmente aggressivo e con limitate opzioni terapeutiche».

Gli studi pubblicati su riviste scientifiche internazionali *

I risultati degli studi sono stati oggetto di una serie di recentissime pubblicazioni, la più recente nel gennaio 2021, la meno recente a marzo 2020. L’attività di ricerca si è avvalsa del finanziamento SATIN della Regione Campania, sebbene l’analisi di alcuni meccanismi dell’immunità antivirale sia di interesse anche per il chiarimento dei meccanismi patogenetici in capo alla Covid-19 e che, pertanto, riportano anche il contributo della Regione Campania alla Task-Force Covid-19 del CEINGE.

Il gruppo di ricerca guidato da Nicola Zambrano, formato anche da giovani ricercatrici come Guendalina Froechlich (dottoranda SEMM) e Chiara Gentile (dottoranda DMMBM), si è avvalso della collaborazione del dott. Emanuele Sasso della NousCom Srl, di Alfredo Nicosia, professore di Biologia molecolare della Federico II e Principal Investigator CEINGE, e del gruppo di Massimo Mallardo, professore di Biologia cellulare della Federico II.

*

International Journal of Molecular Sciences 2021 –Generation of a Novel Mesothelin-Targeted Oncolytic Herpes Virus and Implemented Strategies for Manufacturing

Froechlich G, Gentile C, Infante L, Caiazza C, Pagano P, Scatigna S, Cotugno G, D’Alise AM, Lahm A, Scarselli E, Nicosia A, Mallardo M, Sasso E, and Zambrano N.

Seminars in Immunology 2020 – New viral vectors for infectious diseases and cancer

Sasso E, D’Alise AM, Zambrano N, Scarselli E, Folgori A, Nicosia A.

 

Cancers 2020 – Integrity of the Antiviral STING-mediated DNA Sensing in Tumor Cells Is Required to Sustain the Immunotherapeutic Efficacy of Herpes Simplex Oncolytic Virus

Froechlich G, Caiazza C, Gentile C, D’Alise AM, De Lucia M, Langone F, Leoni G, Cotugno G, Scisciola V, Nicosia A, Scarselli E, Mallardo M, Sasso E, Zambrano N.

 

Molecular Therapy – Oncolytics 2020 – Retargeted and Multi-cytokine-Armed Herpes Virus Is a Potent Cancer Endovaccine for Local and Systemic Anti-tumor Treatment

De Lucia M, Cotugno G, Bignone V, Garzia I, Nocchi L, Langone F, Petrovic B, Sasso E, Pepe S, Froechlich G, Gentile C, Zambrano N, Campadelli-Fiume G, Nicosia A, Scarselli E, D’Alise AM.

 

Scientific Reports 2020 – Replicative conditioning of Herpes simplex type 1 virus by Survivin promoter, combined to ERBB2 retargeting, improves tumour cell-restricted oncolysis

Sasso E, Froechlich G, Cotugno G, D’Alise AM, Gentile C, Bignone V, De Lucia M, Petrovic B, Campadelli-Fiume G, Scarselli E, Nicosia A, Zambrano N.

 

Testo dall’Ufficio Stampa Università Federico II di Napoli sugli studi circa l’utilizzo di Herpes simplex per generare farmaci biologici contro il cancro.