Ad
Ad
Ad
Tag

biologia cellulare

Browsing

La ciber-genetica sincronizza gli orologi delle cellule. Lo rivela la ricerca targata Federico II e Tigem appena pubblicata su Nature Communications

Lo studio, che fa capo ai professori Diego di Bernardo e Mario di Bernardo, dimostra che le cellule possono essere indotte a sincronizzare il proprio ciclo cellulare da un computer attraverso una apposita “interfaccia”. Ciò consentirà, ad esempio, di studiare i meccanismi biologici alla base del ciclo cellulare, la cui regolazione è il principio di molti farmaci antitumorali.

Le cellule, quindi, diventano smart grazie alla ciber genetica.

ciber genetica cellule
Cellule di lievito osservate al microscopio durante un esperimento di sincronizzazione. I segnali in basso mostrano che tutte le cellule osservate crescono all’unisono grazie alla nuova tecnologia sviluppata

I risultati di questa nuova ricerca sono stati pubblicati sulla rivista Nature Communications dal gruppo di ricercatori guidato dal professore Diego di Bernardo del Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale dell’Università degli Studi di Napoli Federico II – DICMAPI e del TIGEM in collaborazione con il gruppo del professore Mario di Bernardo del Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione -DIETI della Federico II, nell’ambito del progetto europeo FET-OPEN H2020 “COSYBIO” (www.cosy-bio.eu).
La ricerca fortemente inter-disciplinare ricade nell’ambito della “ciber-genetica”, una nuovissima disciplina che integra l’ingegneria biomedica e la teoria dei sistemi nonlineari e dei controlli automatici con la biologia molecolare e cellulare al fine di costruire controllori automatici di processi biologici. Nello specifico i ricercatori hanno dimostrato che è possibile sincronizzare la replicazione cellulare in una popolazione di cellule interfacciandole con un computer, utilizzando tecniche di controllo simili a quelle utilizzate per la sincronizzazioni di reti e circuiti in ingegneria.
Questi nuovi sistemi “cibergenetici” potranno rivoluzionare nelle biotecnologie l’efficienza della produzione di farmaci biologici da cellule. Inoltre in un futuro non troppo lontano le stesse tecnologie potranno essere miniaturizzate per regolare processi biologici e dar vita a veri e proprio “ciberfarmaci” o smart drugs.
Alla ricerca hanno preso parte, tra gli altri, Sara Napolitano dottoranda presso il DICMAPI e Davide Fiore del Dipartimento di Matematica e Applicazioni sempre dell’Università Federico II.

 

L’articolo completo:
Automatic synchronisation of the cell cycle in budding yeast through closed-loop feedback control | Nature Communications

 Testo e immagine dall’Ufficio Stampa Università degli Studi di Napoli Federico II

UN PROTOCOLLO INNOVATIVO PER LA SCOPERTA DI NUOVI POTENZIALI FARMACI 

Istituto Telethon Dulbecco, Istituto Nazionale di Fisica Nucleare, Università di Trento e Università degli Studi di Perugia insieme per la ricerca mirata di farmaci in grado di contrastare gravi malattie neurodegenerative ad oggi incurabili 

protocollo farmaci Università Trento Perugia
Da sinistra: Lidia Pieri (Sibylla), Graziano Lolli (Dip. CIBIO, UniTrento), Maria Letizia Barreca (Dip. Scienze Farmaceutiche, UniPG), Andrea Astolfi (Dip. Scienze Farmaceutiche, UniPG/Sibylla), Giovanni Spagnolli (Dip. CIBIO, UniTrento/Sibylla), Alberto Boldrini (Sibylla), Luca Teruzzi (Sibylla), Emiliano Biasini (Dip. CIBIO, UniTrento), Pietro Faccioli (Dip. Fisica, UniTrento/INFN-TIFPA), Tania Massignan (Dip. CIBIO, UniTrento, ora a Sibylla)

TrentoPerugia, 12 gennaio 2021 – Un protocollo innovativo per la scoperta di nuovi potenziali farmaci è stato messo a punto da un ampio team internazionale guidato da ricercatori e ricercatrici dell’Università degli Studi di Trento (Dipartimento di Biologia Cellulare, Computazionale e Integrativa e dal Dipartimento di Fisica), dell’Università degli Studi di Perugia (Dipartimento di Scienze Farmaceutiche), dell’Istituto Telethon Dulbecco, Fondazione Telethon e dell’Istituto Nazionale di Fisica Nucleare (INFN).

“Pharmacological Protein Inactivation by Folding Intermediate Targeting” (PPI-FIT), questo il nome del nuovo metodo, è frutto di un lavoro dal forte carattere multidisciplinare, grazie a contributi che vanno dalla fisica teorica all’informatica, alla chimica farmaceutica, dalla biochimica alla biologia cellulare. Il lavoro di ricerca è stato pubblicato oggi sulla rivista Communications Biology – Nature Publishing Group.

«Il nuovo approccio multidisciplinare consiste nell’identificare piccole molecole in grado di bloccare il processo di ripiegamento (folding) di una proteina coinvolta in un processo patologico, promuovendone quindi la degradazione attraverso i meccanismi di controllo presenti nelle cellule» – spiegano i ricercatori. «PPI-FIT è stato applicato per la prima volta nel campo delle malattie da prioni, patologie neurodegenerative rare che colpiscono l’uomo e altri mammiferi e che sono balzate all’attenzione dell’opinione pubblica negli anni Novanta in occasione dell’emergenza “mucca pazza”. Queste patologie sono causate dalla conversione conformazionale di una normale proteina, chiamata proteina prionica cellulare, in una forma patogena aggregata, in grado di propagarsi come un agente infettivo (prione). Grazie al metodo PPI-FIT, gli autori hanno identificato una classe di molecole in grado di ridurre i livelli cellulari della proteina prionica e bloccare la replicazione della forma infettiva nelle colture cellulari».

Il calcolo impiegato nel PPI-FIT si fonda su alcuni metodi matematici originariamente sviluppati in fisica teorica per studiare fenomeni tipici del mondo subatomico, come l’effetto tunnel quantistico. Questi metodi sono poi stati adattati per la simulazione di processi biomolecolari complessi, come il ripiegamento e l’aggregazione di proteine.

I risultati ottenuti indicano che bersagliare i processi di ripiegamento delle proteine potrebbe rappresentare un nuovo paradigma farmacologico per modulare i livelli di diversi fattori coinvolti in processi patologici. Da una prospettiva ancora più ampia, questo studio suggerisce l’esistenza di un generico meccanismo di regolazione dell’espressione proteica, ad oggi non considerato, che agisce al livello dei percorsi di ripiegamento.

Lo studio si è avvalso anche della collaborazione di gruppi di ricerca dell’Università di Santiago de Compostela, dell’Istituto di Biofisica del Consiglio Nazionale delle Ricerche, dell’Institute of Neuropathology dell’University Medical Center di Hamburg-Eppendorf, del Dipartimento di Scienze Biomediche dell’Università di Padova e dell’Istituto Veneto di Medicina Molecolare di Padova.

I risultati descritti nello studio hanno inoltre generato anche due richieste di brevetto da parte delle istituzioni coinvolte, una già approvata e la seconda attualmente in attesa di approvazione.

La start-up Sibylla Biotech (https://www.sibyllabiotech.it), nata dalla collaborazione scientifica tra alcuni degli autori dello studio – Maria Letizia Barreca, Giovanni Spagnolli, Graziano Lolli, Pietro Faccioli ed Emiliano Biasini – e spin off dell’Università degli Studi di Perugia, dell’ Università di Trento e dell’Istituto Nazionale di Fisica Nucleare, sta ora impiegando le potenzialità di PPI-FIT per sviluppare farmaci contro un’ampia varietà di patologie umane, quali ad esempio il cancro e più recentemente COVID-19, come ad oggi documentato dal deposito di tre domande di brevetto.

La tecnologia PPI-FIT 

PPI-FIT (Pharmacological Protein Inactivation by Folding Intermediate Targeting) è un protocollo farmacologico in grado di identificare molecole la cui funzione è quella di ridurre l’espressione di una proteina nella cellula, disattivandone la funzione patologica. Questo è possibile perché le molecole sono scelte per legarsi ad una “tasca” proteica identificata su uno stato intermedio del processo di ripiegamento (folding) della proteina. Bloccato a metà strada, il ripiegamento non avviene e la proteina viene degradata dalla cellula stessa.

La possibilità di identificare stati intermedi di folding si basa su una piattaforma di calcolo rivoluzionaria, che permette di simulare al calcolatore i percorsi di ripiegamento di proteine di rilevanza biologica, con livello di precisione atomico. Il metodo di calcolo che ha portato a questo risultato si fonda su metodi matematici di fisica teorica che sono stati adattati per consentire la simulazione di processi biomolecolari complessi, come il ripiegamento e l’aggregazione di proteine, grazie al lavoro di Pietro Faccioli, professore associato nel Dipartimento di Fisica dell’Università di Trento e affiliato all’Istituto Nazionale di Fisica Nucleare, e del suo team.

Una proteina esce dal ribosoma come una catena di amminoacidi, e assume la sua forma biologicamente attiva solo in un secondo momento, dopo aver completato il percorso di ripiegamento (folding). A causa dell’intrinseca complessità, lo studio del ripiegamento di proteine biologicamente interessanti richiede tempi di calcolo inaccessibili con i metodi finora disponibili, anche utilizzando il più grande supercomputer al mondo appositamente disegnato per la dinamica molecolare. L’imponente avanzamento tecnologico che permette le simulazioni alla base di PPI-FIT è il frutto di una visione interdisciplinare nata all’interno del panorama scientifico dell’INFN, che collega la fisica teorica con la chimica e la biologia. Avendo la possibilità di osservare per la prima volta questi percorsi di ripiegamento, la tecnologia PPI-FIT consente di identificare e caratterizzare degli stati intermedi conformazionali che sono visitati dalla proteina durante il percorso verso lo stato biologicamente attivo (o nativo), e la cui emivita ha rilevanza biologica. Tali stati intermedi possono contenere una tasca di legame, diventando quindi nuovi bersagli per lo sviluppo di farmaci in grado di legarli e bloccarli, portando alla loro inattivazione.

La tecnologia è stata inventata dai soci fondatori di Sibylla Biotech nell’ambito di una ricerca accademica sulla replicazione del prione supportata da INFN, Fondazione Telethon, Università degli Studi di Trento e Università degli Studi di Perugia ed è stata utilizzata con successo in studi scientifici e brevettati, per ricostruire il meccanismo di replicazione dei prioni, e per sviluppare una nuova strategia farmacologica contro questi agenti infettivi.

*Giovanni Spagnolli, Tania Massignan, Andrea Astolfi, Silvia Biggi, Marta Rigoli, Paolo Brunelli, Michela Libergoli, Alan Ianeselli, Simone Orioli, Alberto Boldrini, Luca Terruzzi, Valerio Bonaldo, Giulia Maietta, Nuria L. Lorenzo, Leticia C. Fernandez, Yaiza B. Codeseira, Laura Tosatto, Luise Linsenmeier, Beatrice Vignoli, Gianluca Petris, Dino Gasparotto, Maria Pennuto, Graziano Guella, Marco Canossa, Hermann C. Altmeppen, Graziano Lolli, Stefano Biressi, Manuel M. Pastor, Jesús R. Requena, Ines Mancini, Maria L. Barreca, Pietro Faccioli, Emiliano Biasini. “Pharmacological Inactivation of the Prion Protein by Targeting a Folding Intermediate”. Communications Biology, 2012

 

Testo e immagine dall’Ufficio Stampa Università di Trento e Università degli Studi di Perugia