Rilevato gas molecolare freddo, sotto forma di monossido di carbonio, nel mezzo interstellare della galassia che ospita il quasar Pōniuā‘ena
Osservato per la prima volta gas molecolare freddo, sotto forma di monossido di carbonio, nella galassia che ospita un buco nero supermassiccio in un’epoca remota della storia del cosmo, quando l’Universo aveva solo settecento milioni di anni. La scoperta, realizzata da un team internazionale guidato da ricercatrici e ricercatori dell’Istituto Nazionale di Astrofisica (INAF), è stata possibile grazie all’osservatorio NOEMA sulle Alpi francesi.
Le 12 antenne dell’osservatorio NOEMA, sulle Alpi francesi. Crediti: IRAM, J.Boissier
Come si influenzano a vicenda la crescita di un buco nero supermassiccio e quella della galassia che lo ospita? Che impatto hanno questi buchi neri sulle primissime fasi evolutive delle galassie? Un team internazionale guidato da ricercatrici e ricercatori dell’Istituto Nazionale di Astrofisica (INAF) si è posto questi quesiti, tra i più spinosi dell’astrofisica contemporanea, e per affrontarli ha osservato uno dei tre quasar luminosi più distanti noti, la cui luce è partita circa tredici miliardi di anni fa, quando l’universo aveva un’età di appena settecento milioni di anni.
Illustrazione del quasar Pōniuāʻena. Crediti: International Gemini Observatory/NOIRLab/NSF/AURA/P. Marenfeld
I quasar sono nuclei estremamente brillanti di galassie attive, la cui enorme luminosità deriva dall’intensa attività del buco nero supermassiccio nascosto nel cuore della galassia. Il quasar scelto dal team si chiama Pōniuā‘ena, che in lingua hawaiana “evoca l’invisibile fonte rotante della creazione, circondata da brillantezza”, ed è alimentato da un buco nero la cui massa è pari a un miliardo e mezzo di volte quella del Sole. La galassia che lo ospita si trova nel mezzo dell’epoca della reionizzazione, quel periodo della storia cosmica, verificatosi alcune centinaia di milioni di anni dopo il Big Bang, durante il quale l’Universo è diventato trasparente alla radiazione emessa da stelle e galassie, così che la loro luce può raggiungerci oggi. Quasar come questo si sono formati molto presto nella sequenza temporale del cosmo, trovandosi in ambienti estremi caratterizzati dall’accumulo di enormi quantità di gas e polvere, ma le ragioni di una comparsa così rapida sono ancora uno dei misteri più grandi nell’astrofisica extragalattica.
Mappa dell’emissione di gas molecolare (monossido di carbonio) da parte del quasar Poniua‘ena, realizzata dall’osservatorio NOEMA. Crediti: IRAM/NOEMA/C. Feruglio (INAF)
Osservando il quasar Pōniuā‘ena con il Northern Extended Millimeter Array (NOEMA), il più potente radiotelescopio del suo genere nell’emisfero nord, il team ha rilevato gas molecolare freddo, sotto forma di monossido di carbonio, nel mezzo interstellare della galassia che ospita il quasar. Si tratta di un rilevamento da record: non era mai stato osservato gas molecolare freddo a epoche così antiche nella storia dell’Universo. I risultati sono stati pubblicati su The Astrophysical Journal Letters.
Mappa dell’emissione di gas molecolare (monossido di carbonio) da parte del quasar Poniua‘ena, realizzata dall’osservatorio NOEMA. Crediti: IRAM/NOEMA/C. Feruglio (INAF)
Si ritiene che il gas molecolare freddo sia uno degli ingredienti chiave per una efficiente formazione stellare. Per questo, gli astronomi ritengono che il gas molecolare fosse presente già nell’Universo primordiale, anche prima che le stelle si formassero in grandi quantità. Di conseguenza, la scoperta del monossido di carbonio nel quasar Pōniuā’ena rappresenta una nuova pietra miliare per comprendere la formazione delle primissime molecole nell’Universo.
“È la prima volta che misuriamo la riserva di gas molecolare freddo e polvere nell’Universo primordiale, appena qualche centinaia di milioni di anni dopo il Big Bang”, spiega Chiara Feruglio, ricercatrice INAF a Trieste e prima autrice dello studio. “Troviamo che le galassie ospiti di quasar nell’Universo antico hanno già la capacità di accumulare una massa di gas e polvere molto elevata: circa venti miliardi di masse solari, comparabile con quanto osservato in epoche cosmiche successive. È interessante notare che, nonostante il breve tempo cosmico intercorso dal Big Bang all’epoca in cui osserviamo il quasar Pōniuā‘ena, le quantità relative di gas freddo e polvere fredda è già molto simile al valore misurato nella nostra galassia, la Via Lattea, e altre galassie che popolano l’Universo odierno”.
“Sappiamo che questo quasar ospita un buco nero molto massiccio, che deve essersi formato o da una marcata concentrazione primordiale di massa oppure tramite accrescimento di gas a un tasso molto elevato su concentrazioni di massa più piccole” nota la co-autrice Francesca Civano, Chief Scientist presso il Physics of the Cosmos Program Office del NASA Goddard Space Flight Center a Greenland nel Maryland, Stati Uniti. “Le osservazioni erano state programmate per studiare solamente la componente della polvere, non ci aspettavamo di rilevare anche una grande riserva di gas freddo, anche perché, per gli altri due quasar noti a distanze così elevate, il gas freddo non è stato ancora individuato. Invece con sorpresa abbiamo trovato due righe molto forti, che indicano una massiccia riserva di gas freddo e denso”.
“Solo la notevole sensibilità recentemente raggiunta da NOEMA, unita alla sua ampia larghezza di banda di frequenza, ha consentito la scoperta del monossido di carbonio a Pōniuā’ena” aggiunge Jan Martin Winters, astronomo dell’Institut de radioastronomie millimétrique (IRAM) in Francia e co-autore dello studio. “La potenza recentemente acquisita da NOEMA mantiene ora la promessa di rilevare il gas molecolare freddo in molte più sorgenti che ospitano quasar in queste epoche cosmiche primordiali. Tali rilevazioni permetterebbero di far luce anche sulla produzione di elementi pesanti nelle primissime fasi dell’Universo”.
L’idrogeno molecolare è di fondamentale importanza in quanto è il costituente base da cui nascono le stelle, e spesso viene invocato come il “serbatoio” della formazione stellare. Sfortunatamente, l’idrogeno molecolare non può essere osservato di per sé, ma si può utilizzare una relazione empirica tra la massa del monossido di carbonio e la massa dell’idrogeno molecolare per ricavare la quantità di idrogeno molecolare dalla quantità misurata di monossido di carbonio. L’osservazione del monossido di carbonio nel quasar Pōniuā’ena ha quindi permesso al team di ottenere una prima stima della densità cosmica di idrogeno molecolare. La stima di questo parametro fornisce importanti informazioni sulla chimica primordiale, svelando nuovi dettagli su come si sono formate le prime e più semplici molecole dell’Universo. Queste stime erano finora limitate a epoche cosmiche molto successive, a partire da circa un miliardo di anni dopo il Big Bang. “La densità cosmica di idrogeno molecolare stimata grazie alle osservazioni del quasar Pōniuā‘ena concorda con quanto predetto dai più recenti modelli di formazione ed evoluzione di gas freddo nelle prime fasi dell’Universo e dalle simulazioni cosmologiche”, ricorda il ricercatore INAF Umberto Maio, co-autore dello studio. Questo risultato indica che i modelli teorici sono sulla buona strada per spiegare le proprietà fondamentali dell’Universo primordiale.
Conclude Luca Zappacosta dell’INAF, co-autore della ricerca e a capo della collaborazione scientifica HYPERION: “Pōniuā‘ena fa parte di HYPERION, un campione dei quasar primordiali luminosi, specificamente selezionati per le ‘abitudini alimentari’ estreme dei loro buchi neri massicci. Studiando i quasar di HYPERION miriamo a comprendere la natura della comparsa così precoce di questi oggetti sorprendenti e a caratterizzare l’evoluzione simultanea di un buco nero e della sua galassia ospite. In questo contesto, questo rilevamento da record è cruciale in quanto pone le basi per scoprire il ruolo del gas molecolare freddo accumulato nei primi quasar in formazione e le avide abitudini alimentari dei buchi neri”.
Per ulteriori informazioni:
L’articolo “HYPERION: First constraints on dense molecular gas at z=7.5149 from the quasar Pōniuā‘ena”, di Chiara Feruglio, Umberto Maio, Roberta Tripodi, Jan Martin Winters, Luca Zappacosta, Manuela Bischetti, Francesca Civano, Stefano Carniani, Valentina D’Odorico, Fabrizio Fiore, Simona Gallerani, Michele Ginolfi, Roberto Maiolino, Enrico Piconcelli, Rosa Valiante, Maria Vittoria Zanchettin, è stato pubblicato online sulla rivista Astrophysical Journal Letters.
Testo e immagini dall’Ufficio stampa – Struttura per la Comunicazione di Presidenza dell’Istituto Nazionale di Astrofisica (INAF)
MISURATO IL “COMBUSTIBILE” DELLE GALASSIE DI 4 MILIARDI DI ANNI FA
Lo studio dell’Università di Padova e INAF pubblicato su «Astrophysical Journal Letters» indica che queste galassie lontane hanno riserve di idrogeno atomico comparabili a quelle delle galassie più vicine
Misurato il “combustibile” delle galassie di 4 miliardi di anni fa. Galassia spirale ricca di idrogeno neutro. L’immagine è stata ottenuta da dati acquisiti con la Hyper Suprime-Cam installata al telescopio Subaru (Osservatorio di Mauna Kea, Hawaii) e indica l’estensione dell’emissione luminosa proveniente dalle stelle. Il contorno bianco delimita la regione da cui proviene l’emissione dell’idrogeno, che si estende ben oltre l’emissione delle stelle e consiste in una nube di gas. (Credits Francesco Sinigaglia/MIGHTEE)
L’evoluzione di una galassia è caratterizzata dalla formazione di nuove stelle e dalla trasformazione di quelle preesistenti. Lo scenario standard della formazione stellare nelle galassie prevede che ci sia stato un picco di attività circa 11-12 miliardi di anni fa e che da allora le galassie abbiano cominciato a formare progressivamente sempre meno stelle. Ma cosa determina questo comportamento?
Le stelle si formano a partire dal collasso di dense nubi di idrogeno molecolare che a loro volta si formano quando gli atomi di idrogeno neutro si legano insieme. Una galassia “consuma” idrogeno neutro, lo trasforma in idrogeno molecolare e, successivamente, in stelle. Per mantenere attiva la formazione di nuove stelle, una galassia, quindi, necessita di un continuo rifornimento di idrogeno atomico.
Come si genera il nuovo idrogeno neutro all’interno delle galassie? La letteratura scientifica suggerisce due vie: l’accrescimento di gas diffuso dal mezzo intergalattico (accrescimento cosmologico), la fusione di galassie (galaxy merging). Finora le relazioni che legano l’idrogeno neutro, ad altre proprietà osservabili delle galassie, è stato osservato in modo diretto solo nell’Universo vicino, corrispondente all’ultimo miliardo di anni.
Nell’articolo dal titolo “MIGHTEE-Hi: Evolution of Hi Scaling Relations of Star-forming Galaxies at z < 0.5” pubblicato su «Astrophysical Journal Letters», il team di ricerca guidato da Francesco Sinigaglia, dottorando al Dipartimento di Fisica e Astronomia “Galileo Galilei” dell’Università di Padova e associato all’Istituto Nazionale di Astrofisica – unitamente ai ricercatori di MIGHTEE (MeerKAT International GHz Tiered Extragalactic Exploration) – ha misurato per la prima volta le relazioni che legano la massa di idrogeno atomico alla massa stellare e al tasso di formazione stellare in galassie a una distanza corrispondente a 4 miliardi di anni fa.
«Abbiamo osservato, a una distanza mai raggiunta finora, come la variazione di idrogeno atomico muti in funzione della quantità di stelle e del tasso di formazione stellare in lontane galassie “attive” (star-forming) – spiega Francesco Sinigaglia, primo autore dello studio –. I risultati indicano che queste galassie lontane 4-5 miliardi di anni hanno riserve di idrogeno atomico comparabili a quelle delle galassie attuali, soprattutto nel caso delle galassie massicce. Questo dato, sapendo che la formazione delle stelle consuma rapidamente l’idrogeno atomico, può essere spiegato ipotizzando che esista un meccanismo che “rifornisce” di idrogeno atomico, in modo efficiente e dall’esterno, le galassie. Puntiamo in futuro a interpretare, utilizzando modelli teorici, quale meccanismo di rifornimento di idrogeno sia quello predominante ai fini di spiegare i risultati ottenuti dalle osservazioni».
Foto Francesco Sinigaglia
«Sebbene sia evidente che l’idrogeno atomico rivesta un ruolo fondamentale, poiché è l’ingrediente primario per poter formare stelle, non è chiaro se si “limiti” a essere tale o se influenzi in modo più profondo la storia e la modalità di formazione stellare. Ecco perché diventa fondamentale capire se esistano o meno correlazioni tra la massa di idrogeno atomico e le altre proprietà delle galassie – afferma Giulia Rodighiero, Professoressa del Dipartimento di Fisica e Astronomia “Galileo Galilei” dell’Università di Padova e coordinatrice locale della partecipazione in MIGHTEE –. Per far questo ci servono sia i dati sull’idrogeno neutro provenienti da MeerKAT, situato in Sudafrica, che quelli sull’idrogeno molecolare ottenuti con telescopi submillimetrici come ALMA, situato in Cile nel deserto di Atacama».
Foto Giulia Rodighiero
«In futuro estenderemo, anche attraverso nuovi dati provenienti da MeerKAT e da altri radiotelescopi, lo studio a distanze maggiori e a nuove proprietà galattiche per capire come l’interazione con altre galassie, e in generale l’ambiente in cui esse vivono, influenzi la massa di idrogeno. Utilissima – conclude Sinigaglia – sarà quindi la collaborazione al progetto SKA (Square Kilometre Array), una delle infrastrutture astronomiche più grandi e affascinanti operativo a partire dal 2030, che ha come obiettivo la costruzione della più grande rete di radiotelescopi al mondo tra Australia e Sudafrica».
Titolo: “MIGHTEE-HI: Evolution of HI Scaling Relations of Star-forming Galaxies at z<0.5” – «Astrophysical Journal Letters» 2022
Autori: Francesco Sinigaglia, Giulia Rodighiero, Ed Elson, Mattia Vaccari, Natasha Maddox, Bradley S. Frank, Matt J. Jarvis, Tom Oosterloo, Romeel Davé, Mara Salvato, Maarten Baes, Sabine Bellstedt, Laura Bisigello, Jordan D. Collier, Robin H. W. Cook, Luke J. M. Davies, Jacinta Delhaize, Simon P. Driver, Caroline Foster, Sushma Kurapati, Claudia del P. Lagos, Christopher Lidman, Pavel E. Mancera Piña, Martin J. Meyer, K. Moses Mogotsi, Hengxing Pan, Anastasia A. Ponomareva, Isabella Prandoni, Sambatriniaina H. A. Rajohnson, Aaron S. G. Robotham, Mario G. Santos, Srikrishna Sekhar, Kristine Spekkens, Jessica E. Thorne, Jan M. van der Hulst, and O. Ivy Wong
Testo e foto dall’Università degli Studi di Padova
DELLE GALASSIE ATTIVE NON È COMPLETAMENTE VERIFICATO
I risultati del lavoro del team internazionale guidato dal prof. Francesco Massaro di UniTo rilanciano l’eterno dibattito tra Mendel e Darwin per le radio galassie e gli oggetti di tipo BL Lac
La galassia attiva Hercules A: foto Hubble Telescope sovrapposta all’immagine radio del Very Large Array (VLA). Foto Credits: NASA, ESA, S. Baum and C. O’Dea (RIT), R. Perley and W. Cotton (NRAO/AUI/NSF), and the Hubble Heritage Team (STScI/AURA) – http://www.spacetelescope.org/images/opo1247a/, CC BY 3.0
Un gruppo internazionale di astrofisici italiani guidato dal Prof. Francesco Massaro del Dipartimento di Fisica dell’Università degli Studi di Torino, associato sia all’Istituto Nazionale di Astrofisica che all’Istituto Nazionale di Fisica Nucleare, ha dimostrato – in un articolo pubblicato dalla rivista internazionale Astrophysical Journal Letters–che le previsioni del modello unificato delle galassie attive, per una particolare classe di sorgenti conosciute come oggetti di tipo BL Lac, non sono verificate.
Immagine ottica di BL Lac PKS 2155-304. Foto di Rfalomo – [1], in pubblico dominioNel nostro Universo esistono galassie denominate “attive” perché presentano un nucleo almeno cento volte più brillante dei miliardi di stelle che le costituiscono. Per oltre 30 anni, gli astrofisici avevano pensato che le differenze osservate tra le diverse classi di galassie attive fossero da imputare, in prevalenza, a un solo unico parametro: l’orientazione della struttura interna rispetto alla linea di vista. In accordo con quello che viene definito il modello unificato, tutte le galassie attive sarebbero “geneticamente” simili e l’angolo rispetto alla linea di vista l’unico parametro che le fa apparire diverse.
“Se il modello unificato è, almeno all’ordine zero, corretto – spiega il Prof. Massaro –, l’ambiente su grande scala dove la galassia attiva si trova è una proprietà che non dipende da come la si guarda. Quindi oggetti che possono apparire con diverse proprietà osservate perché semplicemente visti con una diversa inclinazione, se intrinsecamente uguali, dovranno risiedere in un ambiente che ha le stesse caratteristiche”.
Questo è proprio il caso delle radio galassie di tipo FRI, considerate sorgenti intrinsecamente uguali agli oggetti di tipo BL Lac. I loro getti di plasma si espandono ben al di fuori della loro galassia ospite su scale dei milioni di anni luce. In accordo con il modello unificato si è sempre pensato che una radio galassia di tipo FRI il cui getto puntasse in direzione della Terra corrispondesse a una sorgente classificabile come BL Lac. Il Prof. Massaro e il suo team internazionale hanno invece mostrato che l’ambiente in cui risiedono BL Lac e radio galassie FRI è estremamente diverso e pertanto le due classi di sorgenti non sono assimilabili.
“Ma il lavoro non è finito qui – aggiunge il Dott. Alessandro Capetti dell’Osservatorio Astrofisico di Torino anch’egli autore dell’articolo – il nostro studio ci ha anche permesso di dimostrare che gli oggetti di tipo BL Lac sembrano essere intrinsecamente simili a una classe differente di radio galassie, estremamente compatte, i cui getti non sono così estesi da essere visti in banda radio su scale ben al di fuori della galassia ospite”.
“Siamo estremamente soddisfatti dei risultati ottenuti e continueremo su questa linea di ricerca – continua il Prof. Massaro –, stiamo infatti cercando di dare una risposta definitiva al quesito sulle proprietà osservate nelle radio sorgenti e alla loro evoluzione, se dipendano dall’ambiente su grande scale in cui nascono, vivono e muoiono oppure se parametri intrinseci, come l’angolo rispetto alla linea di vista, siano sufficienti a caratterizzarle. Un po’ come il dibattito tra Darwin e Mendel visto in ambito astrofisico dove al momento le opinioni del primo sembrano prevalere”.
Hanno contribuito all’analisi e alla stesura del lavoro il Dott. R. D. Baldi dell’Istituto di Radio Astronomia, il Dott. R. Campana dell’Osservatorio di Astrofisica e Scienza dello Spazio di Bologna e il Dott. I. Pillitteri dell’Osservatorio Astronomico di Palermo, tutte sedi dell’Istituto Nazionale di Astrofisica, e infine il Dott. A. Paggi, dell’Università degli studi di Torino e il Dott. A. Tramacere dell’Università di Ginevra. La ricerca, portata avanti in questi anni, è stata finanziata dalla Compagnia di San Paolo e dal Consorzio Interuniversitario per la fisica Spaziale (CIFS) ed è stata realizzata nell’ambito del finanziamento relativo ai “Dipartimenti di Eccellenza 2018 – 2022” del MIUR (L. 232/2016) ricevuto dal Dipartimento di Fisica dell’Università degli studi di Torino.
—
Testo e immagini dall’Ufficio Stampa dell’Università degli Studi di Torino
Onde gravitazionali: le nuove sensazionali scoperte del team internazionale di ricercatori Virgo e LIGO
Il ruolo degli scienziati UNIPG
Helios Vocca e Roberto Rettori
Si è svolta oggi presso il Rettorato dell’Università degli Studi di Perugia la conferenza stampa di presentazione ai giornalisti umbri delle nuove, sensazionali scoperte scientifiche realizzate dai ricercatori dei progetti Virgo e LIGO.
Helios Vocca e Roberto Rettori
All’incontro con i giornalisti – realizzato in contemporanea con l’omologo evento internazionale che ha visto collegati i vari gruppi di ricerca in modalità streaming – erano presenti i professori Helios Vocca, Delegato del Rettore per il settore Ricerca, Valutazione e Fund-raising e Roberto Rettori, Delegato del Rettore per il settore Orientamento, Tutorato e Divulgazione scientifica, insieme a numerosi Delegati Rettorali e Direttori dei Dipartimenti dello Studium.
I ricercatori dei progetti Virgo e LIGO hanno annunciato l’osservazione della fusione di un sistema binario di massa straordinariamente grande: due buchi neri di 66 e 85 masse solari, hanno prodotto alla fine un buco nero di circa 142 masse solari. Il buco nero finale è il più massiccio rivelato finora per mezzo delle onde gravitazionali. Si trova in una regione di massa entro cui non è mai stato osservato prima un buco nero, né con onde gravitazionali né con osservazioni elettromagnetiche, e potrebbe servire a spiegare la formazione dei buchi neri supermassicci. Inoltre, il componente più pesante del sistema binario iniziale si trova in un intervallo di massa proibito dalla teoria dell’evoluzione stellare e rappresenta una sfida per la nostra comprensione degli stadi finali della vita delle stelle massicce.
Helios Vocca
“Il risultato di oggi è per noi fonte di enorme soddisfazione – dichiara il professore Helios Vocca, responsabile del gruppo Virgo Perugia – perché si tratta di una nuova scoperta realizzata grazie ad un detector che è frutto anche del lavoro realizzato dal gruppo Virgo Perugia in trent’anni di attività: un impegno, quello del team perugino, che è stato ampiamente riconosciuto a livello internazionale e che ci vede coinvolti nel management sia del progetto Virgo, sia del nuovo esperimento giapponese ‘Kagra’, guidato da Takaaki Kajita, premio Nobel per la Fisica nel 2015 e laureato honoris causa del nostro Ateneo. Del nostro gruppo, inoltre – aggiunge Vocca – fa parte anche il dottor Michele Punturo, della sezione INFN di Perugia, attualmente Principal Investigator dell’esperimento ‘Einstein Europe’, il futuro detector europeo per le onde gravitazionali.
Il team di Perugia possiede competenze uniche al mondo – spiega il professor Vocca – in particolare sulle sospensioni degli specchi degli interferometri. In virtù di questa altissima specializzazione, stiamo lavorando insieme ad altri colleghi di vari Paesi europei e giapponesi per creare un laboratorio internazionale proprio a Perugia o comunque in Umbria, al fine di sfruttare le ricadute tecnologiche dei rilevatori di onde gravitazionali in altri settori, quali ad esempio quello del rischio sismico, affinché le avanzatissime tecnologie utilizzate nello spazio servano al miglioramento della vita dei cittadini.
Il tutto, inoltre, – conclude il professor Helios Vocca – avrà un’importante valenza per i nostri studenti: stiamo infatti puntando a costruire, in questo ambito scientifico, un’offerta didattica innovativa interuniversitaria, ovvero corsi di laurea realizzati in partnership con altri Atenei del centro-Italia, per dar vita a una ‘scuola’ che sia davvero unica persino a livello internazionale”.
Roberto Rettori
“In questo periodo di emergenza, nel rispetto delle direttive ministeriali, l’Università degli Studi di Perugia non ha mai interrotto né l’attività didattica né quella di ricerca – ha sottolineato il professore Roberto Rettori -. L’esperimento Virgo, che per l’unità di Perugia è coordinato dal professor Helios Vocca del Dipartimento di Fisica e Geologia, ne è una chiara dimostrazione.
I risultati che i nostri eccellenti ricercatori ottengono in tutte le discipline, permettono al nostro Ateneo di crescere e sempre di più diventare un punto di riferimento in Italia e nel mondo, promuovendo quindi Perugia e il suo territorio. Attraverso le numerose iniziative di divulgazione della ricerca che stiamo organizzando in tutta la regione, l’Università degli Studi di Perugia esce dalle sue mura, arriva alla popolazione e diventa suo patrimonio da difendere e valorizzare. Ringrazio il Magnifico Rettore, Professore Maurizio Oliviero, per il supporto costante che offre a tali iniziative nonché tutti i colleghi per il loro lavoro. L’Ateneo di Perugia è soprattutto il luogo accogliente della conoscenza dove i giovani possono realizzare le loro passioni e costruire il loro futuro”.
La Sala Dessau all’Università di Perugia
Perugia, 2 settembre 2020
Virgo e LIGO svelano nuove e inattese popolazioni di buchi neri
Helios Vocca e Roberto Rettori
Virgo e LIGO hanno annunciato l’osservazione della fusione di un sistema binario di massa straordinariamente grande: due buchi neri di 66 e 85 masse solari, hanno prodotto alla fine un buco nero di circa 142 masse solari. Il buco nero finale è il più massiccio rivelato finora per mezzo delle onde gravitazionali. Si trova in una regione di massa entro cui non è mai stato osservato prima un buco nero, né con onde gravitazionali né con osservazioni elettromagnetiche, e potrebbe servire a spiegare la formazione dei buchi neri supermassicci. Inoltre, il componente più pesante del sistema binario iniziale si trova in un intervallo di massa proibito dalla teoria dell’evoluzione stellare e rappresenta una sfida per la nostra comprensione degli stadi finali della vita delle stelle massicce.
Gli scienziati delle collaborazioni internazionali che sviluppano e utilizzano i rivelatori Advanced Virgo presso lo European Gravitational Observatory (EGO) in Italia e i due Advanced LIGO negli Stati Uniti hanno annunciato l’osservazione di un buco nero di circa 142 masse solari, che è il risultato finale della fusione di due buchi neri di 66 e 85 masse solari. I componenti primari e il buco nero finale si trovano tutti in un intervallo di massa mai visto prima, né con onde gravitazionali né con osservazioni elettromagnetiche. Il buco nero finale è il più massiccio rivelato finora per mezzo di onde gravitazionali. L’evento di onda gravitazionale è stato osservato dai tre interferometri della rete globale il 21 maggio 2019. Il segnale (chiamato GW190521) è stato analizzato dagli scienziati, che stimano che la sorgente disti circa 17 miliardi di anni luce dalla Terra. Due articoli scientifici che riportano la scoperta e le sue implicazioni astrofisiche sono stati pubblicati oggi su Physical Review Letters e Astrophysical Journal Letters,
rispettivamente.
“Il segnale osservato il 21 maggio dello scorso anno è molto complesso e, dal momento che il sistema è così massiccio, lo abbiamo osservato per un tempo molto breve, circa 0.1 s”, dice Nelson Christensen, directeur de recherche CNRS presso ARTEMIS a Nizza in Francia e membro della Collaborazione Virgo. “Non assomiglia molto ad un sibilo che cresce rapidamente in frequenza, che è il tipo di segnale che osserviamo di solito: assomiglia piuttosto ad uno scoppio, e corrisponde alla massa più alta mai osservata da LIGO e Virgo.” Effettivamente, l’analisi del segnale – basata su una potente combinazione di modernissimi modelli fisici e di metodi di calcolo – ha rivelato una gran quantità di informazione su diversi stadi di questa fusione davvero unica.
Questa scoperta è senza precedenti non solo perché stabilisce il record di massa tra tutte le osservazioni fatte finora da Virgo e LIGO ma anche perché possiede altre caratteristiche speciali. Un aspetto cruciale, che ha attratto in particolare l’attenzione degli astrofisici, è che il residuo finale appartiene alla classe dei cosiddetti “buchi neri di massa intermedia” (da cento a centomila masse solari). L’interesse verso questa popolazione di buchi neri è collegato ad uno degli enigmi più affascinanti e intriganti per astrofisici e cosmologi: l’origine dei buchi neri supermassicci. Questi mostri giganteschi, milioni di volte più pesanti del Sole e spesso al centro delle galassie, potrebbero essere il risultato della fusione di buchi neri di massa intermedia.
Fino ad oggi, pochissimi esempi di questa categoria sono stati identificati unicamente per mezzo di osservazioni elettromagnetiche, e il residuo finale di GW190521 è la prima osservazione di questo genere per mezzo di onde gravitazionali. Ed è di interesse ancora maggiore, visto che si trova nella regione tra 100 e 1000 masse solari, che ha rappresentato per molti anni una specie di “deserto dei buchi neri”, a causa della scarsità di osservazioni in questo intervallo di massa.
I componenti e la dinamica della fusione del sistema binario che ha prodotto GW190521 offrono spunti astrofisici straordinari. In particolare, il componente più massiccio rappresenta una sfida per i modelli astrofisici che descrivono il collasso in buchi neri delle stelle più pesanti, quando queste arrivano alla fine della loro vita. Secondo questi modelli, stelle molto massicce vengono completamente distrutte dall’esplosione di supernova, a causa di un processo chiamato “instabilità di coppia”, e si lasciano dietro solo gas e polveri cosmiche. Perciò gli astrofisici non si aspetterebbero di osservare alcun buco nero nell’intervallo di massa tra 60 e 120 masse solari: esattamente dove si trova il componente più massiccio di GW190521. Quindi, questa osservazione apre nuove prospettive nello studio delle stelle massicce e dei meccanismi di supernova.
“Parecchi scenari predicono la formazione di buchi neri nel cosiddetto intervallo di massa di instabilità di coppia: potrebbero risultare dalla fusione di buchi neri più piccoli o dalla collisione multipla di stelle massicce o addirittura da processi più esotici”, dice Michela Mapelli, professore presso l’Università di Padova, e membro dell’INFN Padova e della Collaborazione Virgo. “Comunque, è possibile che si debba ripensare la nostra attuale comprensione degli stadi finali della vita di una stella e i conseguenti vincoli di massa sulla formazione dei buchi neri. In ogni caso, GW190521 è un importante contributo allo studio della formazione dei buchi neri.”
Infatti, l’osservazione di GW190521 da parte di Virgo e LIGO porta la nostra attenzione sull’esistenza di popolazioni di buchi neri che non sono mai stati osservati prima o sono inattesi, e in tal modo solleva nuove intriganti domande sui meccanismi con cui si sono formati. A dispetto del segnale insolitamente breve, che limita la nostra capacità di dedurre le proprietà astrofisiche della sorgente, le analisi più avanzate e i modelli attualmente disponibili suggeriscono che i buchi neri iniziali avessero alti valori di spin, o in altre parole che avessero un’elevata velocità di rotazione.
“Il segnale mostra segni di precessione, una rotazione del piano orbitale prodotta da spin elevati e con un’orientazione particolare”, nota Tito Dal Canton, ricercatore del CNRS presso IJCLab ad Orsay, Francia, e membro della Collaborazione Virgo, “L’effetto è debole e non possiamo esserne certi del tutto, ma se fosse vero darebbe forza all’ipotesi che i buchi neri progenitori siano nati e vissuti in un ambiente cosmico molto dinamico e affollato, come un ammasso stellare denso o il disco di accrescimento di un nucleo galattico attivo.”
Parecchi scenari diversi sono compatibili con questi risultati e anche l’ipotesi che i progenitori della fusione possano essere buchi neri primordiali non è stata scartata dagli scienziati. Effettivamente, noi stimiamo che la fusione abbia avuto luogo 7 miliardi di anni fa, un tempo vicino alle epoche più
antiche dell’Universo.
Rispetto alle precedenti osservazioni di onde gravitazionali, il segnale di GW190521 è molto breve e più difficile da analizzare. La complessa natura di questo segnale ci ha spinto a considerare anche altre sorgenti più esotiche, e queste possibilità sono descritte in un altro articolo che accompagna quello della scoperta. La fusione di un sistema binario di buchi neri resta però l’ipotesi più
probabile.
“Le osservazioni portate avanti da Virgo e LIGO illuminano l’universo oscuro e definiscono un nuovo panorama cosmico”, dice Giovanni Losurdo, che guida Virgo ed è dirigente di ricerca presso l’Istituto Nazionale di Fisica Nucleare in Italia, “E oggi, ancora una volta, annunciamo una scoperta senza precedenti. Continuiamo a migliorare i nostri strumenti per aumentare la loro performance e
per vedere sempre più a fondo nell’Universo.”
Informazioni aggiuntive sugli osservatori di onde gravitazionali:
La Collaborazione Virgo è composta attualmente da circa 580 membri provenienti da 109 istituzioni in 13 diversi paesi, che comprendono Belgio, Francia, Germania, Grecia, Irlanda, Italia, Olanda, Polonia, Portogallo, Spagna e Ungheria. Lo European Gravitational Observatory (EGO) che ospita il rivelatore Virgo si trova vicino a Pisa in Italia ed è finanziato dal Centre National de la Recherche Scientifique (CNRS) in Francia, dall’Istituto Nazionale di Fisica Nucleare (INFN) in Italia, e dal Nikhef in Olanda. Una lista dei gruppi della Collaborazione Virgo è disponibile al link http://public.virgo-gw.eu/the-virgo-collaboration/ . Ulteriori informazioni sono disponibili sul sito web di Virgo http://www.virgo-gw.eu
.LIGO è finanziato dalla National Science Foundation (NSF) e la sua operatività dipende da Caltech e MIT, che hanno concepito e guidato il progetto. Il sostegno finanziario per il progetto Advanced LIGO è venuto dall’NSF, con significativi impegni e contributi da parte tedesca (Max Planck Society), inglese (Science and Technology Facilities Council) e australiana (Australian Research Council-OzGrav). Circa 1300 scienziati di tutto il mondo partecipano all’impresa scientifica della Collaborazione LIGO, che include anche la Collaborazione GEO. Una lista di altri partners è disponibile al link https://my.ligo.org/census.php
.
I RICERCATORI DI PERUGIA A CACCIA DELLE ONDE GRAVITAZIONALI
Un’esperienza ventennale nella descrizione teorica e nello sviluppo di tecnologie per osservare le onde gravitazionali che ha condotto anche a ricadute tecnologiche nel campo delle energie rinnovabili.
Helios Vocca e Roberto Rettori
Il gruppo di scienziati di Perugia che lavora all’esperimento Virgo per la rivelazione e lo studio di onde gravitazionali fa parte del Dipartimento di Fisica e Geologia dell’Università di Perugia e della Sezione di Perugia dell’INFN e da circa trent’anni si occupa de i rivelatori delle Onde Gravitazionali. Il gruppo si occupa per lo più di elabora re modelli teorici e tecniche sperimentali per studiare la dinamica dei sistemi fisici non lineari e in particolare p er lo studio del rumore. Si tratta cioè di conoscere le caratteristiche e saper limitare o utilizzare in modo efficiente tutte qu elle vibrazioni che popolano i fenomeni naturali, dalle vibrazioni delle molecole e degli atomi dovute alla temperatura alle vibrazioni macroscopiche che potrebbero disturbare la rivelazione dei segnali che arrivano dal cosmo e che l’esperimento Virgo rivela. Oltre a questo negli ultimi anni ha acquisito competenze di ottica quantistica, di data analisi e modelli stica della Relatività Generale per sistemi compatti.
Il gruppo di ricerca perugino attivo nell’esperimento Virgo è coordinato dal Prof. Helios Vocca (attualmente nel Management Team sia dell’esperimento europeo Virgo che dell’esperimento giapponese Kagra). Sono nel complesso 12, tra scienziati e tecnici, le persone del Dipartimento di Fisica e della Sezione di Perugia dell’Istituto Nazionale di Fisica Nucleare che costituiscono il team coinvolto nell’osservazione e nell’analisi dei dati raccolti sulle onde gravitazionali; fra loro anche il Dott. Michele Punturo responsabile del gruppo di ricerca astroparticellare per la sezione INFN di Perugia e attualmente Principal Investigato dell’esperimento Einstein Telescope, futuro detector europeo per le Onde Gravitazionali.
Le abilità acquisite dal team perugino nello studio delle vibrazioni, da quelle microscopiche a quelle più grandi, ha consentito di apportare un contributo essenziale ai metodi utilizzati per istallare gli specchi e il complesso dei sistemi ottici, cuore dello strumento per l’osservazione delle onde gravitazionali: l’interferometro Virgo. Il rivelatore Virgo istallato a Cascina, nelle campagne poco fuori Pisa, è costituito da due lunghi tubi di tre chilometri l’uno, disposti perpendicolarmente tra loro a formare una elle. All’interno di questi tubi si fa il vuoto e viene fatto correre un raggio laser avanti e indietro attraverso un sistema di specchi. È proprio lo spostamento degli specchi al passaggio dell’onda gravitazionale che ne rileva la presenza. Di conseguenza è cruciale la realizzazione di queste parti dell’apparato. Attraverso una conoscenza accurata del rumore termico, ovvero delle vibrazioni degli atomi e delle molecole che costituisco i materiati di cui sono fatte le parti del rivelatore Virgo, il gruppo di Perugia ha fatto sì che il segnale delle onde gravitazionali non si confondesse con altri disturbi provenienti dall’ambiente. Il gruppo di Perugia si è occupato, sin dalla nascita del progetto Virgo, dello sviluppo del sistema per sospendere gli specchi all’interno delle torri dell’esperimento. Tale sistema è unico perché consente allo specchio di poter oscillare dissipando pochissima energia e quindi rendendolo estremamente sensibile alla rivelazione dei segnali gravitazionali. Il pendolo è costituito da sottilissimi fili prima di acciaio, ora di un particolare vetro: il quarzo fuso. Insieme ai fili è stato ideato e realizzato un sistema originale di ancoraggio degli specchi attraverso tecniche innovative d’incollaggio delle componenti del rivelatore sviluppate tra i laboratori di Perugia e quelli di Glasgow. Queste tecnologie sono alla base dell’aumento di sensibilità che caratterizza il cosiddetto Advanded Virgo.
Le abilità tecniche e le conoscenze teoriche acquisite in questi trent’anni dai fisici dell’Università di Perugia, coinvolti nel progetto Virgo, ha consentito al gruppo di entrare da protagonista anche nell’esperimento giapponese, Kagra (esperimento guidato da una vecchia conoscenza dell’Ateneo perugino, il Prof. Takaaki Kajita premio Nobel in Fisica nel 2015, al quale nel 2017 è stata riconosciuta la laurea Honoris Causa) trasferendo le proprie competenze alla collaborazione asiatica per la realizzazione delle sospensioni criogeniche in zaffiro delle ottiche del rivelatore.
Testi e foto dall’Ufficio Stampa Università di Perugia