News
Ad
Ad
Ad
Tag

astenosfera

Browsing

Accostare la parola “marea” alla Geologia può lasciare perplessi in prima battuta, scavando nella memoria difficilmente si recupera un ricordo che le vede accomunate. Un termine notoriamente associato al movimento di masse liquide e la scienza che studia le masse rocciose: in che modo sono legati?

A partire dalla metà del ventesimo secolo, la teoria della tettonica a placche è entrata a far parte stabilmente del pensiero scientifico: da allora gli esperti dibattono sui processi che governano il moto dei blocchi tettonici. Postulata e dimostrata la teoria della deriva dei continenti, gli scienziati hanno ricercato le sue cause nella struttura interna della Terra ed in particolare nei moti convettivi del mantello superiore, che determinano l’allontanamento o la collisione delle placche.

Secondo i dati raccolti, però, i movimenti relativi dei blocchi non sono governati esclusivamente dalla dinamica del mantello: esiste una componente orizzontale regolata da un processo diverso. Da ricercare fuori e non dentro il pianeta. Ecco che entrano in gioco le “maree solide”, movimenti di blocchi di litosfera dipendenti dai moti solari e lunari con lungo periodo di oscillazione (maggiore di un anno).

Lo studio “Tidal modulation of plate motions” di Davide Zaccagnino (Università Sapienza di Roma), Francesco Vespe (Agenzia Spaziale Italiana) e Carlo Doglioni (Università Sapienza di Roma e INGV) pubblicato su Earth Science Reviews fornisce dati a sostegno di questa teoria, facendo uso di misurazioni satellitari registrate in uno spazio temporale di più di venti anni.

La sezione di Terra oggetto di studio è la litosfera, l’insieme della crosta terrestre e della parte superiore del mantello. Il suo comportamento – se sottoposta a sforzo – è di tipo rigido, a differenza della sottostante astenosfera più fluida e facilmente deformabile. La separazione tra queste due masse è garantita dalla low velocity zone (LVZ), una fascia a basse velocità delle onde sismiche sulla quale la litosfera scorre con poca frizione.

 

maree solide Carlo Doglioni
La struttura della terra: 1) crosta, 2) mantello, 3) nucleo (esterno liquido e interno solido), 4) litosfera, 5) astenosfera. Immagine USGS, vettoriale di Anasofiapaixao, pubblico dominio

La ricerca ha analizzato la distanza relativa di una serie coppie di stazioni GNSS (Global Navigation Satellite Systems) collocate su placche differenti (9) ed una coppia di controllo sulla stessa placca. Lo studio si è focalizzato sui moti ciclici del Sole e della Luna con oscillazioni comprese tra uno e 18,61 anni. Cicli più brevi e quindi più frequenti vengono mascherati da effetti climatici sull’atmosfera e sul sottosuolo (influenzando ad esempio pressione dei fluidi). Inoltre, i cataloghi delle misurazioni satellitari hanno a disposizione dati degli ultimi 15-20 anni.

Il professor Carlo Doglioni ha quindi risposto per noi ad alcune domande relative a questo ultimo, importante studio.

Professor Doglioni, ci sono teorie e/o ricerche riguardo oscillazioni astronomiche con periodo maggiore? Che cataloghi e misurazioni vengono usati in quel caso?

Lo studio pubblicato è un tassello importante di un percorso di ricerca iniziato circa 30 anni fa, quando si è iniziato a vedere che le placche (cioè i frammenti della litosfera, il guscio esterno della Terra) non si muovono a caso, ma seguono un flusso primario, descritto da quello che abbiamo definito ‘equatore tettonico’, che fa un angolo di circa 30° rispetto all’equatore geografico.

Guarda caso, la proiezione del passaggio della Luna sulla Terra descrive un angolo molto simile. Poi però negli anni sono state documentate delle profonde asimmetrie della tettonica in funzione della polarità geografica, per esempio le differenze tra le catene montuose legate a subduzioni verso ‘est’ o verso ‘ovest’.

Infine è stato documentato come il guscio litosferico, circa 100 km di spessore, abbia un ritardo verso ‘ovest’ di alcuni centimetri l’anno rispetto al mantello sottostante. Quindi la tettonica delle placche è polarizzata. Queste osservazioni cruciali sono state in larga parte ignorate o liquidate come effetti secondari della sola dinamica interna di raffreddamento della Terra.

Ora abbiamo invece una prova sperimentale che le maree solide – e quindi le forze astronomiche – hanno invece un effetto cruciale sulla dinamica delle placche, in particolare quelle che hanno frequenze compatibili con le alte viscosità del mantello terrestre. L’equatore tettonico, per esempio, sembra avere una inclinazione controllata dalla precessione dell’asse di rotazione terrestre, cioè circa 26.000 anni.

Quindi sì, dovrebbero esserci effetti importanti anche con frequenze con periodi più lunghi a quelli delle nutazioni (18.6 anni). In questo caso però non ci sono cataloghi né sismici, né geodetici che ci possano aiutare, se non i dati geologici di lungo periodo.

maree solide Carlo Doglioni
Immagine di Arek Socha

Lo studio conferma inoltre la teoria secondo cui l’attività sismica ha un legame con il movimento relativo di Sole e Luna. Che impatto ha questa relazione sullo studio dei terremoti, in particolare sui cataloghi degli eventi sismici passati e sul monitoraggio delle aree attive? Potranno esserci (o esistono già) studi in “tempo reale” (geologicamente parlando) dell’effetto sui diversi tipi di faglia?

La gravità rimane sempre uno dei segreti più straordinari della natura e i suoi effetti sono in parte ancora da scoprire. Basti pensare che pur avendo il Sole il 99% della massa di tutto il sistema solare, il baricentro del sistema solare oscilla continuamente per effetto della massa rimanente inferiore all’1% di cui Giove fa la parte del leone. Le forze mareali, inoltre, vanno con il cubo della distanza, e questo spiega perché la Luna, pur essendo infinitamente più piccola, ha un effetto mareale circa doppio rispetto al Sole.

La tettonica delle placche e quindi la sismicità esistono però perché il mantello terrestre può convettere, e questo è possibile perché la temperatura e la composizione interna della Terra determinano viscosità che permettono questa mobilità. Tuttavia, la domanda è se i moti convettivi sono l’unico motore attivo oppure se esiste un’altra forza che li mette in movimento.

La componente orizzontale della marea solida ora è il candidato ideale per far scivolare la litosfera sul mantello sottostante, per farla sprofondare nelle zone di subduzione o permettere la risalita per isostasia del mantello al di sotto delle dorsali oceaniche che si formano dove i gradienti di viscosità determinano velocità diverse tra le placche a parità di effetto mareale. In sostanza la convezione mantellica viene polarizzata e attivata dalla componente orizzontale della marea solida; una componente che sposta avanti e indietro il suolo di 10-20 cm a ogni passaggio è la miglior candidata a pompare il sistema tettonico.

Vediamo infatti una certa correlazione con la sismicità in funzione dei periodi in cui la componente orizzontale è maggiore. Tuttavia, la sismicità è la liberazione di gradienti di pressione che si formano nei decenni, se non millenni, e la rottura che provoca il terremoto si attua nel momento in cui le rocce non sono più in grado di accumulare energia; viene dunque raggiunta la soglia critica e si attivano le faglie che producono i terremoti.

La faglia di Sant’Andrea. Foto di Ikluft, CC BY-SA 4.0

In sostanza, la correlazione tra maree e terremoti è più subdola, nel senso che c’è una frequenza maggiore di terremoti quando le placche vanno un po’ più veloci, ma i terremoti avvengono anche quando le placche si muovono più lentamente, qualora lo stato limite o condizione critica siano stati raggiunti. La componente orizzontale fornisce l’energia al sistema, mentre la componente verticale della marea modifica e modula continuamente, ogni secondo, la gravità terrestre, alzando e ribassando la litosfera e quindi anche la superficie terrestre di 30-40 cm, e quindi modificando anche il peso delle rocce: questa oscillazione favorisce o sfavorisce i terremoti in funzione della loro natura.

Per esempio, i terremoti estensionali avvengono più frequentemente durante le fasi di bassa marea (quando cioè la gravità terrestre è massima), mentre i terremoti compressivi avvengono più spesso durante le fasi di alta marea perché con una leggera diminuzione della forza di gravità si facilita lo scorrimento contrazionale.

In sostanza, la componente orizzontale carica il sistema, mentre quella verticale può essere il grilletto che innesca i terremoti, ma questi possono avvenire indipendentemente dalla marea quando la ‘misura è colma’. La Terra esercita delle maree solide che innalzano il suolo lunare di circa 10 metri, e la sismicità lunare ha una ciclicità mensile concentrata nell’emisfero rivolto verso la Terra.

La Luna non ha una tettonica delle placche perché evidentemente non ha temperature interne sufficientemente alte da determinare basse viscosità che permettano la convezione e inoltre si trova in tidal-locking, cioè guarda la Terra sempre con la stessa faccia, quindi manca la rotazione del corpo celeste come per il nostro pianeta. Quindi sì, c’è un controllo gravitazionale fondamentale sulla sismicità, ma questo non significa che ora siamo in grado di prevedere i terremoti.

Sismogramma all’Osservatorio di Weston, Massachussetts. Foto di Z22, CC BY-SA 3.0

Abbiamo però una chiave di lettura che ci permetterà di approfondire quei settori delle geoscienze che ci possono dare informazioni deterministiche sull’evoluzione delle aree a maggiore pericolosità sismica: dalla geodesia alla geochimica dei fluidi, dalla statistica all’intelligenza artificiale, discipline che ci permettono di riconoscere dei transienti o anomalie che preludono l’attivazione delle faglie, o meglio il rilascio dell’energia accumulata nei volumi adiacenti alle faglie stesse che sono dei piani passivi di rilascio e canalizzazione di una parte di questa energia.

Che impatto può avere questa ricerca sullo studio degli hotspot, ad esempio quello delle Hawaii? Può aiutare a definire la profondità di origine del magma che alimenta l’apparato vulcanico? Può aiutare a determinare la dinamica dello spostamento dell’hotspot stesso (se lo spostamento esiste)?

Uno studio relativamente recente – grazie alla tecnica sismologica delle receiver functions – ha permesso di ricostruire la profondità a circa 130 km della camera magmatica sotto le Hawaii: questo significa che sì, gli hotspot pacifici sono alimentati da magma che proviene appunto da quel livello sotto la litosfera che si chiama canale a bassa velocità (low-velocity zone, LVZ) che costituisce la parte alta dell’astenosfera che va da circa 100 a 410 km di profondità.

I magmi delle Hawaii inoltre, sulla base dei dati petrologici sappiamo che si sono formati a una temperatura di circa 1500°C, a conferma del dato sismologico, e sono quindi relativamente superficiali, non provenienti cioè dal limite nucleo-mantello a 2900 km, come alcuni ricercatori avevano ipotizzato. Le Hawaii, come varie altre catene magmatiche, ci documentano che la litosfera si muove rispetto all’astenosfera e questo dato ci permette di calcolare la deriva della litosfera verso ‘ovest’ rispetto al mantello.

Carta batimetrica delle isole Hawaii. Immagine USGS in pubblico dominio; credits per Barry W. Eakins, Joel E. Robinson, Japan Marine Science e Technology Center: Toshiya Kanamatsu, Jiro Naka, University of Hawai’i: John R. Smith, Tokyo Institute of Technology: Eiichi Takahashi, e Monterey Bay Aquarium Research Institute: David A. Clague – Bathymetry image PDF, tratta dalla pubblicazione USGS Geologic Investigations Series Map I-2809: Hawaii’s Volcanoes Revealed

Vi sono anche altri tipi di catene magmatiche che venivano etichettate come hotspot, in particolare posizionate sulle dorsali oceaniche come l’Islanda, le Azzorre, Ascencion, ma è stato dimostrato dalle ricerche di scienziati italiani come Enrico Bonatti e Marco Ligi che in realtà sono zone dove il mantello fonde a una temperatura più bassa per il maggiore contenuto di fluidi, a cominciare dall’acqua stessa. Sono chiamati appunto wetspot o punti bagnati e hanno quindi un’origine e una composizione diversa rispetto agli hotspot come le Hawaii. Lo spostamento degli hotspot e wetspot è documentato, ma ha natura e significato geodinamico diverso. Nessun punto o margine di placca sulla Terra è fisso, tutto si muove, a velocità diverse, rispetto al mantello sottostante.

Quali campi altri di ricerca potranno beneficiare delle conclusioni di questo studio?

Il nostro auspicio (con Davide Zaccagnino e Francesco Vespe, coautori della ricerca, ma anche di numerosi altri colleghi che nel corso degli anni hanno contribuito in modo fondamentale a queste ricerche) è che questa scoperta sia l’inizio di un percorso che ci permetterà di capire sempre meglio non solo la sismicità, ma anche i meccanismi fondamentali di funzionamento della Terra e le sue interazioni con la dinamica planetaria e, perché no, anche dell’origine ed evoluzione della vita.

maree solide Carlo Doglioni
Immagine di malith d karunarathne

 

Riferimenti:

Tidal modulation of plate motions – Davide Zaccagnino, Francesco Vespe, Carlo Doglioni – Earth Science Reviews https://doi.org/10.1016/j.earscirev.2020.103179