News
Ad
Ad
Ad
Tag

ASI

Browsing

LA PIÙ ACCURATA MAPPA VULCANICA DEL SATELLITE GIOVIANO IO

Grazie ai dati raccolti dallo stumento JIRAM a bordo della missione NASA Juno, un team di ricerca a guida INAF ha identificato 242 “hot spot”, ovvero zone calde che indicano la presenza di vulcani, di cui 23 non osservati precedentemente sul satellite più interno di Giove. I dati indicano una maggiore concentrazione di punti vulcanici caldi nelle regioni polari rispetto alle latitudini intermedie. Si tratta della mappatura migliore mai ottenuta da remoto.

La più accurata mappa vulcanica del satellite gioviano Io
La più accurata mappa vulcanica del satellite gioviano Io, grazie allo strumento JIRAM. Insieme di figure chiamate “super immagini”, ottenute calcolando la media di più osservazioni JIRAM acquisite in un lasso di tempo di pochi minuti. Questo approccio riduce la possibilità di falsi positivi. Le immagini ritraggono gli hot spot di Io nel corso degli anni. Crediti: F. Zambon et al. / Geophysical Research Letters

L’infernale luna Io (la più interna fra quelle regolari del sistema gioviano) è il corpo vulcanicamente più attivo dell’intero Sistema solare. Un recente articolo pubblicato sulla rivista Geophysical Research Letters (GRL) fa nuova luce sulle proprietà vulcaniche di questo satellite, in particolare grazie a nuovi dati raccolti da JIRAM (Jovian InfraRed Auroral Mapper), uno degli otto strumenti a bordo della sonda NASA Juno. Finanziato dall’Agenzia Spaziale Italiana (ASI) e realizzato da Leonardo, lo strumento vede la responsabilità scientifica dell’Istituto Nazionale di Astrofisica (INAF). L’articolo delinea la mappa più recente della distribuzione degli hot spot (punti vulcanici caldi) di Io prodotta con dati JIRAM da remoto alla migliore scala spaziale attualmente disponibile. I ricercatori, guidati dall’INAF, sono riusciti a ottenere, inoltre, una migliore copertura delle regioni di Io prossime ai poli rispetto al passato.

Francesca Zambon, membro del gruppo JIRAM, ricercatrice dell’INAF di Roma e prima autrice dell’articolo pubblicato su GRL, spiega:

“La mappa degli hot spot presentata nel nostro lavoro è la più aggiornata tra quelle basate su dati di telerilevamento spaziale. Analizzando le immagini infrarosse acquisite da JIRAM, abbiamo individuato 242 punti vulcanici caldi, di cui 23 non presenti in altri cataloghi e localizzati nella maggior parte dei casi nelle regioni polari, grazie alla peculiare orbita della sonda Juno”.

La ricercatrice sottolinea: “Il confronto tra il nostro studio e il catalogo più recente rivela che JIRAM ha osservato l’82% degli hot spot più potenti precedentemente individuati, e la metà degli hot spot di potenza intermedia, dimostrando quindi che questi sono ancora attivi. Tuttavia, JIRAM ha rilevato solo circa la metà degli hot spot più deboli precedentemente segnalati. Le spiegazioni sono due: o la risoluzione di JIRAM non è sufficiente per rilevare questi deboli punti caldi, oppure l’attività di questi centri effusivi potrebbe essersi sbiadita o interrotta”.

Quando la sonda spaziale NASA Voyager 1 avvicinò Io, il più interno dei satelliti galileiani di Giove, nel marzo 1979, le immagini inviate alla Terra rivelarono che la sua superficie appariva punteggiata da una moltitudine di centri vulcanici caldi, con imponenti colate laviche e pennacchi alti fino a qualche centinaio chilometri. In seguito, l’esplorazione condotta soprattutto dalla missione NASA Galileo chiarì che questi punti caldi sono moltissimi: alcune centinaia, molti dei quali con attività pressoché costante.

 

La luna Io mostra molti centri vulcanici, innescati principalmente dalle potenti forze mareali esercitate da Giove. Lo studio dell’attività vulcanica di questo satellite gioviano è la chiave per comprendere la natura dei suoi processi geologici e la sua evoluzione interna. La distribuzione degli hot spot e la loro variabilità spaziale e temporale sono importanti per definire le caratteristiche del riscaldamento delle maree e i meccanismi attraverso i quali il calore fuoriesce dall’interno.

 

Alessandro Mura, leader del gruppo JIRAM e ricercatore dell’INAF di Roma, prosegue:

“Uno dei maggiori punti aperti nella comprensione della struttura interna di Io è se l’attività vulcanica osservabile in superficie sia dovuta a un oceano di magma globale presente nel mantello, oppure a camere magmatiche che si insinuano nella crosta a minori profondità. Le osservazioni di JIRAM sono tuttora in corso, e le future immagini a maggiore definizione saranno fondamentali per meglio evidenziare i punti caldi deboli e per chiarire la struttura interna di Io”.

Giuseppe Sindoni, responsabile del progetto JIRAM per l’ASI, aggiunge:

“La superficie della luna gioviana Io è molto dinamica, con vulcani ed emissioni laviche in continua evoluzione, come dimostrato da questo importante risultato ottenuto dal nostro strumento JIRAM e dall’ottimo lavoro svolto dal team. L’estensione della missione Juno fino al 2025 ci permetterà di monitorare questa evoluzione e di comprendere meglio i processi fisici che guidano un corpo così complesso e dalle fattezze simili alla nostra Terra primordiale, anche in previsione di future missioni dedicate.”

La sonda Juno è stata lanciata ad agosto 2011 dalla base di Cape Canaveral ed è in orbita attorno a Giove dal luglio del 2016. Da allora ha percorso 235 milioni di chilometri. Juno è tuttora la sonda in orbita planetaria più distante della NASA, e continuerà le sue indagini sul pianeta più grande del Sistema solare fino a settembre 2025.

Alla fine dell’anno, il 30 dicembre 2023, durante la 57ma orbita attorno a Giove, la sonda Juno effettuerà il suo passaggio più ravvicinato in assoluto a Io, a una distanza minima di circa 4800 chilometri. Le missioni Europa Clipper della NASA e JUICE di ESA, che opereranno nel sistema di Giove negli anni 2030, non potranno mai avvicinarsi a simili distanze. Sarà quindi cruciale che Juno possa condurre osservazioni anche con JIRAM durante tutte le prossime opportunità previste nel 2023.


 

Per ulteriori informazioni:

L’articolo “Io hot spot distribution detected by Juno/JIRAM”, di F. Zambon, A. Mura, R. M. C. Lopes, J. Rathbun, F. Tosi, R. Sordini, R. Noschese, M. Ciarniello, A. Cicchetti, A. Adriani, L. Agostini, G. Filacchione, D. Grassi, G. Piccioni, C. Plainaki, G. Sindoni, D. Turrini, S. Brooks, C. Hansen-Koharcheck, S. Bolton, è stato pubblicato su Geophysical Research Letters.

Testo e immagine dall’Ufficio stampa – Struttura per la Comunicazione Istituto Nazionale di Astrofisica – INAF sulla mappa vulcanica di Io prodotta dallo strumento JIRAM

VELA, UNA PULSAR AL LIMITE (DELLA POLARIZZAZIONE)

Le pulsar, stelle di neutroni che ruotano rapidamente, emettono un vero e proprio vento, composto da particelle di alta energia e permeato da campi magnetici, che può scontrarsi con il gas che incontra sul suo cammino. Da questo scontro viene prodotta radiazione di sincrotrone che letteralmente “accende” le nebulose. Un’indagine sulle proprietà della luce proveniente da uno di questi oggetti celesti, la Vela Pulsar Wind Nebula (PWN), osservabile nella direzione della costellazione della Vela, nel cielo australe, mostra come essa risulti polarizzata.

Questo aspetto fornisce importanti indicazioni sulla distribuzione e sulla geometria dei campi magnetici che caratterizzano la pulsar, e dalle quali dipende la direzione di emissione del vento di particelle responsabile della radiazione di sincrotrone all’origine della luminosità della nebulosa circostante. Il risultato, pubblicato oggi, mercoledì 21 dicembre, sulla rivista Nature, è stato ottenuto dalla collaborazione internazionale dell’esperimento Imaging X-ray Polarimetry Explorer (IXPE), satellite, frutto di una collaborazione tra NASA e ASI, che è dotato di innovativi rivelatori sviluppati, realizzati e testati dall’INFN (Istituto Nazionale di Fisica Nucleare) e dall’INAF (Istituto Nazionale di Astrofisica). IXPE è stato in grado di osservare la polarizzazione della luce nella banda X dalla Vela PWN e di studiare il vento prodotto dalla sua pulsar.

pulsar Vela nebulosa
Immagine composita della pulsar Vela e della sua nebulosa, ottenuta con osservazioni degli osservatori spaziali IXPE,Chandra e Hubble Space Telescope. Crediti: NASA/CXC/SAO/IXPE

Prodotta circa 12000 anni fa a seguito dell’esplosione di una stella, la nebulosa della Vela, insieme a quella del  Granchio (risultato anch’essa di una supernova, talmente luminosa da essere visibile anche di giorno, come riportato da astronomi cinesi nel 1054), sono tra i più studiati oggetti celesti della loro tipologia. Ma le somiglianze tra le due sorgenti astrofisiche non terminano qui. Le radiazioni emesse da entrambe le nebulose risultano infatti polarizzate. Ciò significa che i campi elettromagnetici dei fotoni non sono distribuiti in modo casuale, ma risultano essere allineati lungo direzioni specifiche, che variano in base alla regione della nebulosa da cui sono stati emessi. L’allineamento dei fotoni implica che gli elettroni ad altissima energia che compongono il vento della pulsar alla base del meccanismo responsabile dell’emissione della luce di sincrotrone, e quindi dei fotoni stessi, si muovano lungo una spirale all’interno del campo magnetico delle PWN. Comportamento che suggerisce che i campi magnetici di Vela PWN siano disposti in una geometria molto ordinata.

“IXPE ha rivelato che i campi magnetici di Vela PWN sono ben allineati con l’immagine nei raggi X della nebulosa” dice Fei Xie, professoressa associata alla Guangxi University e già post-doc presso l’INAF di Roma, prima autrice dell’articolo pubblicato su Nature. “Questi campi formano delle strutture a forma di ciambella (dette tori) che circondano l’equatore della pulsar e i getti di emissione che partono dai poli della pulsar stessa. Ancora più sorprendentemente, il grado di polarizzazione misurato risulta essere molto elevato, superando il 60% in più regioni. Questo è il grado di polarizzazione più elevato mai misurato in una sorgente celeste nei raggi X ed è un valore prossimo al valore massimo permesso dalla fisica dell’emissione di sincrotrone”.

“L’alta polarizzazione vista da IXPE, assieme alla distribuzione energetica costante (nel blu), suggerisce che gli elettroni non sono accelerati da processi di shock turbolenti, che risultano svolgere un ruolo predominante in altre sorgenti di raggi X, quali i resti di Supernova con strutture a guscio. A produrre un tale risultato, invece, potrebbe essere un processo non turbolento come la riconnessione magnetica”, dice Roger W. Romani, astrofisico di Stanford coinvolto nell’analisi dei dati.

“Questa misura di polarizzazione in banda X, ottenuta da IXPE, aggiunge un pezzo finora mancante al puzzle di Vela PWN”, dichiara Alessandro Di Marco, ricercatore presso l’INAF di Roma che ha contribuito all’analisi dei dati. “IXPE ha svelato la struttura dei campi magnetici nella regione centrale, fornendoci una loro mappa con una risoluzione precedentemente mai ottenuta, mostrando come questa sia in accordo con le immagini ottenute in radio per la nebulosa esterna”.

“Il risultato è stato reso possibile dalle caratteristiche uniche degli strumenti, tutti Italiani, al piano focale dei tre telescopi di IXPE, che non solo forniscono una sensibilità alla polarizzazione senza precedenti in questa banda di energia, ma permettono anche di misurare, fotone per fotone, la direzione d’arrivo e l’energia”, commenta Luca Baldini, ricercatore dell’INFN e dell’Università di Pisa, Co-Principal Investigator italiano di IXPE.

“Le misure di polarizzazione della Vela PWN nei raggi X evidenziano quanto sia diversificata in sorgenti astrofisiche la struttura dei campi magnetici alla base dell’emissione X osservata. Quella della Vela PWN è di certo tra le meno complesse, dato l’elevato grado di polarizzazione vicino al limite teorico previsto” dice Immacolata Donnarumma, ASI Project Scientist.

IXPE sta continuando a osservare il cielo ai raggi X sondando più in profondità nelle strutture dei campi magnetici di diverse sorgenti celesti, fornendoci nuove informazioni sulla fisica estrema di questi acceleratori cosmici di particelle.

 

Testo e immagine dagli Uffici Stampa Agenzia Spaziale Italiana, Istituto Nazionale di Astrofisica, Istituto Nazionale di Fisica Nucleare.

BEPI COLOMBO: SERENA OSSERVA LA MAGNETOSFERA DI MERCURIO

Bepi Colombo ha fatto centro! Un team di ricercatori guidati dall’Istituto Nazionale di Astrofisica (INAF) riporta, in un articolo pubblicato su Nature Communications, le prime osservazioni della magnetosfera di Mercurio effettuate con l’esperimento Search for Exosphere Refilling and Emitted Neutral Abundances (SERENA), montato a bordo della missione ESA-JAXA BepiColombo. La suite di strumenti SERENA, a guida INAF, ha effettuato misure senza precedenti di particelle sia solari che planetarie, con due dei suoi quattro strumenti, PICAM e MIPA, già operativi. Gli altri due, Strofio ed ELENA, inizieranno a lavorare dopo la messa in orbita. Il tutto con il supporto dell’Agenzia Spaziale Italiana (ASI).

BEPI COLOMBO: SERENA OSSERVA LA MAGNETOSFERA DI MERCURIO
La figura mostra gli spettrogrammi in energia delle particelle misurate, sia fuori che dentro la magnetosfera di Mercurio con lo strumento SERENA a bordo della missione Bepi Colombo ESA-JAXA. Crediti: S. Orsini, T. Alberti, A. Varsani, S. Barabash / Nature Communications

I ricercatori hanno catturato gli spettrogrammi in energia delle particelle misurate sia fuori che dentro la magnetosfera di Mercurio. I dati descritti nello studio fanno riferimento al primo volo ravvicinato della sonda attorno a Mercurio, nell’ottobre 2021. Stefano Orsini, ricercatore dell’INAF di Roma e responsabile scientifico di SERENA, spiega:

“Ogni osservazione ha evidenziato fenomeni sorprendenti e inattesi. Fuori della magnetosfera sono stati osservati degli eventi energetici sovrapposti al tipico vento solare emanato dalla nostra stella madre. Inoltre, un segnale a bassa energia sembra indicare la presenza di gas proveniente dal satellite, che nello spazio continua a rilasciare particelle per effetto dell’esposizione a forti sbalzi termici. Di tale ‘inquinamento’ si dovrà tenere conto per separarlo dal segnale esterno che si vuole studiare”.

SERENA è stato ideato per lo studio dell’ambiente particellare del primo pianeta del Sistema solare. Installato sul satellite Mercury Planetary Orbiter (MPO), tecnicamente SERENA è un rilevatore di particelle energetiche cariche e neutre emesse dalla superficie del pianeta come effetto dell’impatto di ioni energetici provenienti sia dal vento solare che dalla magnetosfera.

Orsini prosegue descrivendo la magnetosfera di Mercurio: “Ci sono i segni di diversi regimi di plasma rispetto a quelli terrestri: ciò è dovuto sia al campo magnetico del pianeta, molto più debole rispetto a quello terrestre, sia alla estrema vicinanza al Sole, che fa di Mercurio il pianeta più ‘stressato’ dalla radiazione solare di tutto il sistema planetario”.

“Le misure della suite SERENA durante il primo flyby di Mercurio dimostrano la varietà di obiettivi scientifici che possono essere indagati in questo straordinario laboratorio naturale”, sottolinea Christina Plainaki, ricercatrice nelle scienze del Sistema solare e ASI Project Scientist per BepiColombo/SERENA. “Particolare rilievo assumono le indagini delle interazioni fra il vento solare e la peculiare magnetosfera del pianeta, in configurazioni non trovate altrove nel Sistema solare e capaci pertanto di offrirci indicazioni fondamentali sulla fisica alla base di questi processi”.

In tutto, gli strumenti italiani a bordo della sonda spaziale lanciata nel 2018 sono quattro: oltre a SERENA, SIMBIO-SYS (Spectrometers and Imagers for MPO BepiColombo Integrated Observatory), ISA (Italian Spring Accelerometer) e MORE (Mercury Orbiter Radio science Experiment). L’arrivo della missione su Mercurio è previsto nel 2025. Dopo i cinque voli ravvicinati già effettuati (attorno alla Terra e a Venere nel 2020, un secondo in prossimità di Venere e il primo di Mercurio nel 2021 e il quinto attorno al pianeta nel 2022), saranno necessari altri quattro flyby del pianeta più vicino al Sole prima di poter inserire nella sua orbita le due sonde che compongono la missione, l’MPO dell’Agenzia spaziale europea (ESA) e il Mercury Magnetospheric Orbiter (MMO) dell’Agenzia spaziale giapponese (JAXA).


 

Per ulteriori informazioni:

L’articolo “Inner southern magnetosphere observation of Mercury via SERENA ion sensors in BepiColombo mission”, di Stefano Orsini, A. Milillo, H. Lichtenegger, A. Varsani, S. Barabash, S. Livi, E. De Angelis, T. Alberti, G. Laky, H. Nilsson, M. Phillips, A. Aronica, E. Kallio, P. Wurz, A. Olivieri, C. Plainaki, J. A. Slavin, I. Dandouras, J. M. Raines, J. Benkhoff, J. Zender, J.-J. Berthelier, M. Dosa, G. C. Ho, R. M. Killen, S. McKenna-Lawlor, K. Torkar, O. Vaisberg, F. Allegrini, I. A. Daglis, C. Dong, C. P. Escoubet, S. Fatemi, M. Fränz, S. Ivanovski, N. Krupp, H. Lammer, François Leblanc, V. Mangano, A. Mura, R. Rispoli, M. Sarantos, H. T. Smith, M. Wieser, F. Camozzi, A. M. Di Lellis, G. Fremuth, F. Giner, R. Gurnee, J. Hayes, H. Jeszenszky, B. Trantham, J. Balaz, W. Baumjohann, M. Cantatore, D. Delcourt, M. Delva, M. Desai, H. Fischer, A. Galli, M. Grande, M. Holmström, I. Horvath, K. C. Hsieh, R. Jarvinen, R. E. Johnson, A. Kazakov, K. Kecskemety, H. Krüger, C. Kürbisch, Frederic Leblanc, M. Leichtfried, E. Mangraviti, S. Massetti, D. Moissenko, M. Moroni, R. Noschese, F. Nuccilli, N. Paschalidis, J. Ryno, K. Seki, A. Shestakov, S. Shuvalov, R. Sordini, F. Stenbeck, J. Svensson, S. Szalai, K. Szego, D. Toublanc, N. Vertolli, R. Wallner & A. Vorburger, è stato accettato per la pubblicazione online sulla rivista Nature Communications.

Testo e immagine dagli Uffici stampa – Struttura per la Comunicazione Istituto Nazionale di Astrofisica (INAF) e Agenzia Spaziale Italiana (ASI).

IXPE RIVELA NUOVI INDIZI SUI MECCANISMI ALLA BASE DELLA LUMINOSITÀ DEI BLAZAR

A poco meno di un anno dal suo lancio, la missione Imaging X-Ray Polarimetry Explorer (IXPE), frutto della collaborazione tra NASA e Agenzia Spaziale Italiana, continua a fornire nuovi fondamentali contributi per la comprensione delle caratteristiche delle più esotiche sorgenti astrofisiche. Grazie ai dati raccolti dai suoi tre telescopi, che si avvalgono di particolari rivelatori per lo studio della polarizzazione della luce nella banda X sviluppati e realizzati dall’Istituto Nazionale di Fisica Nucleare – INFN e dall’Istituto Nazionale di Astrofisica – INAF, IXPE ha infatti consentito di appurare che dietro l’accelerazione – a velocità prossime a quelle della luce – delle particelle di cui sono composti i poderosi getti emessi dai blazar, oggetti appartenenti alla famiglia dei nuclei galattici attivi tra i più luminosi del cielo, potrebbero celarsi delle potenti onde d’urto. A rivelarlo, uno studio pubblicato oggi, 23 novembre, sul sito web della rivista Nature dal team internazionale di scienziati della collaborazione IXPE, di cui fanno parte ricercatrici e ricercatori di ASI, INFN, INAF e delle università di Siena, Torino, Pisa, Firenze, Roma Tre, Roma Tor Vergata e Padova, che ha preso in esame i dati relativi a Markarian 501, un blazar situato in direzione della costellazione di Ercole, confrontandoli con quelli ottenuti in altre lunghezze d’onda da alcuni telescopi da Terra e dallo spazio.

IXPE blazar
Schema dell’osservazione del blazar Markarian 501 da parte del satellite IXPE. Nel circolo sono evidenziate le particelle di alta energia presenti nel getto (in blu). Quando le particelle si scontrano con l’onda d’urto, indicata dalla barra bianca, acquistano energia ed emettono raggi X. Allontanandosi dalla zona d’impatto, emettono radiazione di energia più bassa: dapprima luce visibile, poi infrarossa e infine onde radio. A grande distanza dall’onda d’urto le linee del campo magnetico sono più aggrovigliate, provocando una maggiore turbolenza nel fascio di particelle. Crediti:Pablo Garcia (NASA/MSFC)

Costituiti da buchi neri supermassicci molto attivi di milioni o forse miliardi di masse solari, che attraggono continuamente nella loro orbita il materiale responsabile della formazione dei cosiddetti dischi di accrescimento, i blazar sono caratterizzati dall’emissione di due potenti getti di particelle, perpendicolari ai dischi stessi, uno dei quali indirizzato verso la Terra, rendendoli così particolarmente luminosi. Studiando nel dettaglio la polarizzazione della luce nella banda X proveniente da Markarian 501, ovvero la direzione in cui oscilla il campo elettrico a essa associato, IXPE ha consentito di mappare il campo magnetico all’interno del quale le particelle vengono accelerate emettendo fotoni, e di comprendere per la prima volta che la causa più probabile della loro energia così elevata è attribuibile al propagarsi di un’onda d’urto all’interno del getto.

“Abbiamo risolto un mistero che dura da 40 anni”, ha dichiarato Yannis Liodakis, autore principale dello studio e astronomo presso il FINCA, il centro astronomico finlandese dell’ESO. “Finalmente abbiamo completato il puzzle e il quadro che ne emerge è piuttosto chiaro”.

Le osservazioni effettuate da IXPE nel marzo 2022, insieme a quelle condotte nello stesso periodo in direzione dello stesso oggetto da altri telescopi, hanno quindi consentito di studiare la radiazione emessa in un’ampia gamma di lunghezze d’onda, tra cui quella radio, ottica e, per la prima volta, X, e di dimostrare come proprio la radiazione X emessa dal blazar fosse più polarizzata di quella ottica, che a sua volta è risultata più polarizzata di quella radio.

Dopo aver confrontato le informazioni con i modelli teorici, il team di astronomi si è reso conto che i dati corrispondevano maggiormente a uno scenario in cui un’onda d’urto accelera le particelle del getto. Un’onda d’urto si genera quando qualcosa si muove più velocemente della velocità del suono del materiale circostante, come quando un jet supersonico vola nell’atmosfera terrestre.

Le discrepanze riscontrante nel grado di polarizzazione della luce alle diverse frequenze possono perciò essere spiegate supponendo che, una volta superato il luogo di origine dell’onda d’urto, le particelle che compongono il getto dei blazar attraversino regioni caratterizzate da campi magnetici turbolenti, in maniera analoga a ciò che accade a un flusso d’acqua dopo aver superato una cascata. La turbolenza ha infatti l’effetto di ridurre la polarizzazione della luce. La radiazione X risulterebbe perciò più polarizzata poiché viene emessa da particelle più energetiche, appena accelerate nella zona dell’onda d’urto, al contrario della luce emessa nella banda ottica e in quella radio.

“Le prime misure di polarizzazione nei raggi X di questa classe di sorgenti hanno consentito, per la prima volta, un confronto diretto con i modelli elaborati nell’ambito del complesso quadro evidenziato dalle osservazioni multifrequenza, dalla banda radio fino alle altissime energie. Nuove evidenze verranno fornite da IXPE grazie all’analisi dei dati in corso e di quelli da acquisire in futuro”, commenta Immacolata Donnarummaproject scientist di IXPE per l’Agenzia Spaziale Italiana.

“IXPE è stato progettato per funzionare in una banda di energia, ‘i raggi X molli’, che permette, tra l’altro, di sondare la fisica di diverse classi di Blazar. Nel caso di Mrk 501 abbiamo potuto sondarne una in cui i raggi X sono emessi da elettroni che si muovono a velocità molto prossime a quelle della luce intorno al campo magnetico. Altri Blazar di diversa tipologia verranno studiati durante la prossima fase osservativa della missione”, osserva Paolo Soffitta, ricercatore INAF e principal investigator italiano di IXPE.

“Grazie ad un rivelatore innovativo, il Gas Pixel Detector, interamente sviluppato e realizzato in Italia, IXPE ha permesso finalmente di aggiungere uno dei tasselli mancanti alla comprensione dell’Universo ad alta energia, e questo studio dimostra appieno il potenziale scientifico di questa nuova finestra osservativa”, conclude Luca Baldini, dell’INFN di Pisa e co-principal investigator  italiano di IXPE.

Ulteriori campagne di osservazione si concentreranno nel prossimo futuro su Markarian 501, allo scopo di comprendere se il grado polarizzazione vari nel tempo. Indagini che vedranno impegnato anche IXPE, che durante i prossimi due anni, IXPE studierà inoltre altre sorgenti simili, fornendo un nuovo strumento capace di esplorare sempre più da vicino le proprietà delle regioni di spazio che ospitano sorgenti astrofiche esotiche quali buchi neri, stelle di neutroni e resti di supernovae.

 

Testo e immagine dall’Ufficio stampa – Struttura per la Comunicazione di Presidenza Istituto Nazionale di Astrofisica (INAF)

Spazio: lanciato in orbita il primo micro-orto made in Italy

 

Si chiama GREENCube (MicroGREENs cultivation in a CubeSat) ed è il primo esperimento di orto spaziale lanciato in orbita con il volo inaugurale del nuovo vettore ESA “VEGA-C” dalla base spaziale di Kourou (Guyana francese) insieme al satellite scientifico “LARES2” e ad altri cinque nano-satelliti. Il micro-orto che misura 30 x 10 x 10 centimetri è stato progettato da un team scientifico tutto italiano composto da ENEA, Università Federico II di Napoli e Sapienza Università di Roma, nel ruolo di coordinatore e titolare di un accordo con l’Agenzia Spaziale Italiana (ASI).

Basato su coltura idroponica a ciclo chiuso e dotato di sistemi di illuminazione specifica, controllo di temperatura e umidità per rispondere ai requisiti restrittivi degli ambienti spaziali, GREENCube è in grado di garantire un ciclo completo di crescita di microverdure selezionate fra le più adatte a sopportare condizioni estreme – in questo caso crescione – ad elevata produttività, per 20 giorni di sperimentazione.

GREENCube
Nella foto è visibile il satellite GREENCube, di forma cilindrica delle dimensioni di 10 x 10 x 30 cm, realizzato in alluminio, con posizionate lungo tutte le pareti i pannelli fotovoltaici necessari ad alimentare il sistema di gestione e controllo ed i sensori durante la missione nello spazio. Ai quattro angoli sono disposte le antenne radio di colore dorato per permettere le comunicazioni dal centro di comando al satellite e ritorno. In testa al satellite il sistema che permette di mantenere in rotazione continua il satellite durante la missione per mantenere costanti le temperature

Alloggiato in un ambiente pressurizzato e confinato, GREENCube è dotato inoltre di un sistema integrato di sensori hi-tech per il monitoraggio e controllo da remoto dei parametri ambientali, della crescita e dello stato di salute delle piante e trasmetterà a terra, in totale autonomia, tutti i dati acquisiti. Il satellite si compone di due unità: la prima contiene le microverdure, il sistema di coltivazione e controllo ambientale, la soluzione nutritiva, l’atmosfera necessaria e i sensori; la seconda unità ospita la piattaforma di gestione e controllo del veicolo spaziale.

“La ricerca spaziale si sta concentrando sullo sviluppo di sistemi biorigenerativi per il supporto alla vita nello spazio; le piante hanno un ruolo chiave come fonte di cibo fresco per integrare le razioni alimentari preconfezionate e garantire un apporto nutrizionale equilibrato, fondamentale per la sopravvivenza umana in condizioni ambientali difficili”, sottolinea Luca Nardi del Laboratorio Biotecnologie ENEA. “I piccoli impianti di coltivazione in assenza di suolo come GREENCube possono svolgere un ruolo chiave per soddisfare le esigenze alimentari dell’equipaggio, minimizzare i tempi operativi ed evitare contaminazioni, grazie al controllo automatizzato delle condizioni ambientali. Per questo dopo il successo del lancio del razzo e del rilascio in orbita del suo carico, stiamo aspettando con ansia le temperature ottimali interne per dare il via libera alla sperimentazione”, conclude.

Il sistema di coltivazione in orbita consentirà di massimizzare l’efficienza sia in termini di volume che di consumo di energia, aria, acqua e nutrienti e, nel corso della missione, sono previsti parallelamente anche esperimenti di coltivazione a terra all’interno di una copia esatta del satellite per verificare gli effetti delle radiazioni, della bassa pressione e della microgravità sulle piante.

Nella foto si vedono due operatori mentre inseriscono il satellite GREENCube, di forma cilindrica realizzato in alluminio e delle dimensioni di 10 x 10 x 30 cm, all’interno del cilindro di lancio. Una volta arrivato nella giusta orbita dal centro di comando viene inviato un segnale che permette di sganciare la molla alla base del cilindro di lancio per permettere la fuoriuscita del satellite e l’avvio della missione per cui è stato progettato

Il confronto tra i risultati degli esperimenti ottenuti nello spazio e a terra sarà cruciale per valutare la risposta delle piante alle condizioni di stress estremo e la crescita delle microverdure in orbita al fine di utilizzarle come alimento fresco ed altamente nutriente nelle future missioni.

“Oltre alla capacità di convertire anidride carbonica in biomassa edibile, gli organismi vegetali sono in grado di rigenerare risorse preziose come aria, acqua e nutrienti minerali”, evidenzia Nardi, “ma da non sottovalutare è anche il beneficio psicologico per l’equipaggio, derivante dalla coltivazione e dal consumo di verdura fresca che richiamano la familiarità di abitudini e ambienti terrestri per far fronte allo stress psicologico cui gli astronauti sono soggetti, dovuto alle condizioni di isolamento in un ambiente totalmente artificiale”.

Oltre a GREENCube a bordo del razzo, sono stati lanciati nell’orbita spaziale anche altri 5 mini-satelliti, della classe CubeSat, che costituiscono il carico secondario del lanciatore e sono: gli italiani AstroBio e ALPHA, lo sloveno Trisat-R e i due francesi MTCube-2 e Celesta mentre il carico principale è rappresentato dal satellite LARES-2 dell’Agenzia Spaziale Italiana (ASI) che condurrà studi nel campo della relatività generale e di altre teorie di fisica fondamentale.

Nell’immagine è visibile al centro una struttura sferica costituita dal satellite LARES 2 mentre a dx e sx due strutture cilindriche di colore blu dotate di molla sul fondo necessarie al rilascio dei satelliti Cubesat una volta arrivati nella giusta orbita

Sviluppato dall’azienda italiana Avio, il nuovo razzo Vega-C rappresenta l’ultima evoluzione del lanciatore europeo Vega inaugurato nel 2012, ma più grande, potente, versatile e con una maggiore capacità di carico a fronte di minori costi.

Testo e foto dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma

PROGETTO SUNDISH: ALLA SCOPERTA DEL SOLE NELLE ONDE RADIO

È stato pubblicato sulla rivista Solar Physics lo studio, guidato da ricercatori dell’Istituto Nazionale di Astrofisica (INAF), che presenta il nuovo sistema di osservazione del Sole nelle onde radio con i radiotelescopi INAF di Bologna e di Cagliari, realizzato in collaborazione con l’Agenzia Spaziale Italiana (ASI). Questi dati, attualmente unici nel panorama astrofisico internazionale, integrano le osservazioni solari condotte in altre frequenze e saranno preziose per monitorare e comprendere meglio l’attività della nostra stella in vista del suo massimo, previsto per il 2024.

Progetto Sundish
Progetto Sundish: alla scoperta del Sole nelle onde radio

L’Italia è uno dei pochi Paesi al mondo a poter vantare una rete di radiotelescopi in grado di lavorare in modo coordinato. Distribuita tra Emilia Romagna, Sicilia e Sardegna – e gestita dalle Strutture dell’INAF di Bologna e Cagliari – questa sofisticata rete di antenne ha avviato da qualche anno il progetto Sundish, coordinato dall’astrofisico dell’INAF Alberto Pellizzoni, con una serie di osservazioni congiunte nelle onde radio di una sorgente celeste tanto vicina quanto finora poco  monitorata in questa finestra dello spettro elettromagnetico: il nostro Sole.

Questo nuovo sistema di monitoraggio radio-solare, che vede per ora protagoniste le antenne di Medicina e il Sardinia Radio Telescope (SRT), è l’oggetto dell’articolo appena pubblicato sulla rivista Solar Physics, in cui si svelano i dettagli dei ricevitori e dei software appositamente creati per l’analisi dei dati solari, oltre che un catalogo di 170 immagini prodotte dalle antenne italiane.

Lo studio – che ha coinvolto anche le università di Cagliari, Trieste ed Exeter, in Inghilterra, oltre che l’istituto olandese di radioastronomia ASTRON – ha rafforzato la già intensa collaborazione scientifica tra INAF e ASI, grazie allo sforzo congiunto per lo sviluppo presente e futuro del sistema di osservazione radio-solare. Il sistema, che tra non molto potrebbe arrivare ad osservare fino alla frequenza di ben 100 GHz, consente di mappare e studiare, tramite strumenti dedicati, sia l’emissione del Sole quieto che delle sue regioni attive, sempre più numerose man mano che ci si avvicina al massimo del ciclo solare, previsto per il 2024.

“Ad oggi – spiega Pellizzoni – siamo i primi e per ora gli unici a osservare il Sole alle frequenze radio nell’intervallo tra 18 e 26 GHz, e quindi siamo in grado di poter ottenere informazioni fisiche in una regione dello spettro elettromagnetico cruciale, ma al momento poco utilizzata per gli studi solari per via delle difficoltà osservative in questa particolare banda radio. Per la prima volta è stato possibile misurare la temperatura del Sole in questa banda. Inoltre studiare il Sole a queste frequenze ci fornisce informazioni preziose, non solo per capire meglio come funziona la nostra stella, ma anche per contribuire a sviluppare metodi per prevedere i suoi comportamenti più violenti.”

Le regioni attive sono aree molto luminose del Sole, caratterizzate da intensi campi magnetici locali, che forniscono energia per i brillamenti solari e le espulsioni di massa coronale, eventi che in situazioni estreme possono avere effetti negativi sulle moderne tecnologie, specie in ambito spaziale, come i sistemi satellitari di telecomunicazioni, ormai indispensabili alla nostra vita quotidiana.

“In realtà – continua Pellizzoni – siamo partiti da una curiosità tecnica: si può osservare il Sole con i radiotelescopi INAF? Questa curiosità ha innescato gli studi di fattibilità da parte di tanti tecnologi e ricercatori INAF e ASI. Da qui è nato il progetto SunDish che ho ideato e guidato personalmente, e che ora mi occupa a tempo pieno, insieme a molti altri entusiasti giovani e meno giovani! Abbiamo scoperto non solo che queste osservazioni erano fattibili, ma anche che la comunità scientifica internazionale si dimostrava molto interessata ai risultati che avrebbero prodotto nell’ambito dello Space Weather, ovvero la meteorologia dello spazio”.

La tempesta solare più potente finora registrata è stata il cosiddetto “Evento di Carrington”, il 1° settembre 1859. L’evento produsse i suoi effetti su tutta la Terra dal 28 agosto al 2 settembre, con l’interruzione delle linee telegrafiche per 14 ore, e con la produzione di un’aurora boreale visibile anche a latitudini inusuali, addirittura fino a Roma. Conoscere in anticipo questi fenomeni, aiuterebbe sicuramente a attivare per tempo contromisure in grado di limitare i possibili malfunzionamenti o guasti alle infrastrutture tecnologiche più esposte.

“Una cosa curiosa – aggiunge Simona Righini, ricercatrice INAF e co-Principal Investigator del progetto Sundish – è sicuramente il fatto che le parabole di Medicina ed SRT in principio non sono state concepite per osservare il Sole. Anzi agli astronomi era proibito puntare le antenne verso il Sole per timore che l’intenso calore e la forte radiazione potessero danneggiare gli strumenti. È stato necessario un grande impegno da parte di tanti tecnologi e ricercatori INAF, con la preziosa collaborazione di ASI, per rendere tutto questo possibile”.

“Le osservazioni radio del Sole effettuate nell’ambito del progetto SunDish sono di fondamentale importanza per lo Space Weather, in quanto forniscono diagnostiche chiave sulla fisica delle regioni attive e sulla previsione dei brillamenti solari” conclude Mauro Messerotti, fisico solare e senior advisor dell’INAF per lo Space Weather. “In questo contesto, due nuovi strumenti dedicati al monitoraggio del Sole nelle onde radio saranno operativi a breve all’INAF di Trieste ed alla sezione INAF presso l’Università della Calabria”.

L’articolo “Solar Observations with Single-Dish INAF Radio Telescopes: Continuum Imaging in the 18 – 26 GHz Range”, di A. Pellizzoni, S. Righini, M. N. Iacolina, M. Marongiu, S. Mulas, G. Murtas, G. Valente, E. Egron, M. Bachetti, F. Buffa, R. Concu, G. L. Deiana, S. L. Guglielmino, A. Ladu, S. Loru, A. Maccaferri, P. Marongiu, A. Melis, A. Navarrini, A. Orfei, P. Ortu, M. Pili, T. Pisanu, G. Pupillo, A. Saba, L. Schirru, G. Serra, C. Tiburzi, A. Zanichelli, P. Zucca & M. Messerotti, è stato pubblicato su Solar Physics.

 

Testo e foto dall’Ufficio stampa – Struttura per la Comunicazione di Presidenza Istituto Nazionale di Astrofisica – INAF

La Grande macchia rossa di Giove: una tempesta anticiclonica dalla profondità “contenuta”

I nuovi risultati delle misurazioni di gravità del pianeta ottenute dalla sonda Juno rivelano, in uno studio pubblicato su Science, che la grande macchia rossa, pur molto estesa, non è profonda come si immaginava. Questa scoperta potrebbe spiegare i motivi della sua evoluzione e forse della possibile scomparsa.

grande macchia rossa Giove
L’animazione simula il moto delle nuvole della Grande Macchia Rossa di Giove. E’ stata creata applicando il modello del movimento dei venti ad un mosaico di immagini scattate dallo strumento. Credits: NASA/JPL-Caltech/SwRI/MSSS/Gerald Eichstadt/Justin Cowart

Giove è il più grande pianeta del sistema solare, con un raggio equatoriale di 71.492 km, ed è composto principalmente da idrogeno ed elio e per questo viene definito “gigante gassoso”.

La caratteristica forse più iconica del pianeta è la Grande macchia rossa, una tempesta anticiclonica scoperta probabilmente da Giandomenico Cassini nel 1665. Oggi questa assomiglia a un ovale di dimensioni approssimativamente pari a 16000 x 12000 km, che ne fanno la più grande tempesta del sistema solare, seppur negli ultimi 100 anni, per cause ancora ignote, si sia ridotta considerevolmente. La Grande macchia rossa porta con sé ancora molti interrogativi: uno di questi riguarda la profondità con cui questa tempesta si inabissa dentro Giove.

A questo come ad altri quesiti sulla dimensione del nucleo ha risposto la sonda Juno, realizzata dalla NASA con un importante contributo italiano.

Rappresentazione artistica di Juno in orbita attorno a Giove. Crediti: Nasa/JPL-Caltech

Durante due sorvoli ravvicinati di Giove (febbraio e luglio 2019), la missione Juno della NASA (in orbita intorno a Giove dal 5 luglio 2016 per studiare i meccanismi di formazione, la struttura interna, la magnetosfera e l’atmosfera del gigante gassoso) ha osservato per la prima volta da vicino la Grande macchia rossa. Poiché l’interno del pianeta non è direttamente osservabile, per comprenderne la struttura più intima si ricorre a misurazioni accurate del campo gravitazionale, che è espressione della distribuzione della massa all’interno del pianeta.

grande macchia rossa Giove
Geometria delle osservazioni di Juno della Grande Macchia Rossa (GRS). Il campo di velocità della Grande Macchia Rossa (frecce nere) e le tracce a terra di Juno durante PJ18 e PJ21 (linee colorate) sono sovrimposte a una immagine della Grande Macchia Rossa effettuata da JunoCam durante PJ21. La quota della sonda durante il passaggio ravvicinato con la Grande Macchia Rossa (latitudine 20°S) era, rispettivamente per PJ18 e PJ21, di 13,000 km e 19,000 km, con scostamenti longitudinali di 11° e 2° 

Le misure del campo gravitazionale del pianeta avevano mostrato che i forti venti est-ovest (con velocità fino a 360 km/h), visibili tracciando il moto delle nubi, si spingono alla profondità di circa 3000 km.

Gli strati inferiori della Grande Macchia Rossa di Giove sono stati osservati da Juno anche usando i dati del radiometro a microonde (MWR). Ognuno dei sei canali dello strumento osserva diverse profondità sotto le nuvole

Oggi, una nuova ricerca, finanziata in parte dall’Agenzia Spaziale Italiana (ASI) e coordinata da Marzia Parisi, ex-dottoranda della Sapienza, ora post-doc al California Institute of Technology/Jet Propulsion Laboratory, insieme a un gruppo internazionale di cui fanno parte Daniele Durante e Luciano Iess del Dipartimento di Ingegneria meccanica e aerospaziale della Sapienza, mostra come invece i venti della Grande macchina rossa abbiano una profondità di penetrazione verticale piuttosto contenuta, pari a circa 300 km, assai inferiore a quella dei venti che soffiano nelle bande visibili del pianeta. I risultati del lavoro sono stati pubblicati sulla rivista Science.

“I risultati del nostro studio – spiega Daniele Durante del Dipartimento di Ingegneria meccanica e aerospaziale della Sapienza – attestano una massa della tempesta pari a circa la metà dell’intera atmosfera terrestre e poco meno di quella di tutta l’acqua del Mar Mediterraneo, e rappresentano la Grande macchia rossa come un oggetto molto simile a un disco assai esteso (la sua dimensione minore è pari all’incirca al diametro della Terra) ma piuttosto sottile, con caratteristiche che ricordano quelle delle più grandi tempeste terrestri”.

grande macchia rossa Giove
Le dimensioni della Grande macchia rossa a confronto con la Terra. La profondità determinata dalle misure di gravità è di soli 300 km.

Con un’orbita molto eccentrica, la sonda Juno è riuscita ad avvicinarsi molto al gigante gassoso, fino a 4-5000 km al di sopra delle nubi: a queste distanze è possibile avere una elevata sensibilità all’accelerazione gravitazionale esercitata principalmente dalle strutture dell’atmosfera del pianeta. La sonda ha utilizzato lo strumento di radioscienza KaT (Ka-Band Translator, realizzato da Thales Alenia Space-I e finanziato dall’Agenzia spaziale italiana), il cuore dell’esperimento che ha permesso di determinare l’estensione verticale della Grande macchia rossa.

La Grande macchia rossa ha perturbato impercettibilmente l’orbita di Juno, ma l’estrema accuratezza della misura (fino a 0.01 mm/s) ha permesso di catturarne il debolissimo segnale gravitazionale e di stimare così la profondità a circa 300 km.

“Le misure di Juno – conclude Luciano Iess dello stesso Dipartimento – hanno fornito la terza dimensione a quel fenomeno dell’atmosfera di Giove che ha attratto l’attenzione di molti di noi, come anche quella degli astronomi da più di trecento anni, mostrando come sia una tempesta superficiale certamente molto estesa, ma ben poco profonda. Questa nuova misura contribuirà a capirne la natura, l’evoluzione e, forse, la sua possibile scomparsa”.

Riferimenti:

The depth of Jupiter’s Great Red Spot constrained by the Juno gravity overflights – Authors: M. Parisi, Y. Kaspi, E. Galanti, D. Durante, S. J. Bolton, S. M. Levin, D. R. Buccino, L. N. Fletcher, W. M. Folkner, T. Guillot, R. Helled, L. Iess, C. Li, K. Oudrhiri, M. H. Wong. Science 2021 DOI: 10.1126/science.abf1396

Testo e foto dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma

Giove, il pianeta più grande del sistema solare

 

L’anima irrequieta dei pianeti

Il primo sorvolo di Mercurio della missione BepiColombo

Il 2 ottobre all’1.35 ora italiana la sonda spaziale passerà a 200 km dalla superficie del pianeta. A bordo un esperimento, il Mercury Orbiter Radioscience Experiment (MORE), sviluppato dal team guidato da Luciano Iess della Sapienza, che permetterà di determinare la gravità e l’orbita del corpo celeste più vicino al sole.

La sonda spaziale BepiColombo, lanciata il 20 ottobre 2018 dal Centro spaziale di Kourou nella Guyana francese, è in viaggio verso Mercurio, la sua destinazione finale. Il primo dei sei sorvoli del pianeta più vicino al Sole avverrà il 2 ottobre 2021 all’1.35 ora italiana (23.15 del primo ottobre, ora di Greenwich), quando la sonda passerà a 200 km dalla superficie.

BepiColombo ha già effettuato con successo un sorvolo della Terra, il 10 aprile 2020, e due sorvoli di Venere, il 20 ottobre 2020 e il 10 agosto 2021. Questi incontri ravvicinati hanno lo scopo primario di modificare la traiettoria della sonda, facendole acquistare velocità sufficiente per la cattura finale da parte della gravità di Mercurio, prevista per la fine del 2025. Ma allo stesso tempo sono anche un primo assaggio di quanto verrà poi osservato con assai maggiore dettaglio nella missione primaria, quando BepiColombo orbiterà attorno al pianeta per due anni.

Mercurio BepiColombo

BepiColombo nasce dalla collaborazione tra l’ESA (Agenzia Spaziale Europea) e la JAXA (Agenzia Spaziale Giapponese). Prende il nome dallo scienziato italiano Giuseppe (da cui Bepi) Colombo, che diede un contributo fondamentale allo studio di Mercurio. La sonda è composta da tre moduli principali: il modulo MPO (Mercury Planetary Orbiter) e il modulo MTM (Mercury Transfer Module) sviluppati dall’ESA, il terzo modulo MMO (Mercury Magnetospheric Orbiter) sviluppato dalla JAXA. Con la sofisticata strumentazione scientifica di bordo, BepiColombo vuole rispondere ad alcune domande fondamentali per comprendere la formazione e l’evoluzione del pianeta: qual è la sua struttura interna, dal nucleo alla superficie? Quali sono gli elementi e i minerali di cui è composto? Qual è l’origine del campo magnetico e come interagisce con il vento solare, un flusso di particelle alla velocità di 400 km/s?

Mercurio BepiColombo

Quattro dei sedici esperimenti scientifici di BepiColombo sono italiani. Tra questi, l’esperimento di radioscienza, MORE (Mercury Orbiter Radioscience Experiment), è guidato dal professor Luciano Iess del Dipartimento di Ingegneria meccanica e aerospaziale della Sapienza, coadiuvato da un gruppo internazionale di scienziati e ingegneri. In Italia, collaborano le Università di Pisa e Bologna, l’Istituto Nazionale di Astrofisica (INAF) e l’Università d’Annunzio. Gli obiettivi scientifici di MORE sono la determinazione della struttura interna di Mercurio attraverso misure di precisione della gravità del pianeta, la ricerca di violazioni della teoria della relatività generale di Einstein e la dimostrazione in volo di un nuovo e avanzato sistema di navigazione spaziale.

Il primo sorvolo di Mercurio della missione BepiColombo. Immagine ESA

Mercurio è il pianeta più vicino al Sole, dove la curvatura dello spazio-tempo, prevista da Einstein nel 1915, è più accentuata. Tale curvatura produce “anomalie” nell’orbita del pianeta (tra cui la famosa precessione del perielio) e nella propagazione della luce e dei segnali radio (compresa la deflessione osservata durante l’eclisse solare del 1919). Circa un secolo dopo, MORE consentirà di verificare a un livello di precisione mai raggiunto finora se la relatività einsteniana rimane una teoria valida della gravità. I primi esperimenti di fisica fondamentale sono già cominciati nel marzo 2021 e proseguiranno fino alla fine della missione, nel 2027.

Mercurio BepiColombo

MORE si prefigge di raggiungere tali obiettivi scientifici tramite l’utilizzo di segnali radio scambiati tra grandi antenne di terra (34 m di diametro) ubicate in Argentina e California, e uno strumento di bordo, il KaT (Ka-band Transponder), realizzato da Thales Alenia Space Italia con la collaborazione del team di Sapienza e finanziato dall’Agenzia spaziale italiana. L’avanzato sistema radio renderà possibile misurare la distanza della sonda con precisione di pochi centimetri e la sua velocità a livello di alcuni millesimi di millimetro al secondo. I dati di un altro strumento italiano (Italian Spring Accelerometer – ISA) saranno utilizzati per misurare tutte quelle accelerazioni della sonda non riconducibili alla gravità, permettendo di ottenere una determinazione più precisa del moto della sonda.

Il ruolo fondamentale che svolge l’esperimento MORE all’interno della missione BepiColombo conferma Sapienza come un polo centrale della ricerca per le tematiche di struttura ed evoluzione planetaria, fisica fondamentale e sistemi di navigazione interplanetaria.

 

Testo, foto e video dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma

La NASA sceglie VERITAS: la Sapienza su Venere

La missione spaziale selezionata dalla Nasa per l’esplorazione di Venere vede coinvolto in maniera determinante il gruppo di ricerca della Sapienza guidato da Luciano Iess. VERITAS dovrà rispondere a molte domande sull’evoluzione di questo pianeta ancora misterioso che, da un passato molto simile a quello della Terra, è diventato uno dei luoghi più inospitali del sistema solare.

La missione spaziale VERITAS (Venus Emissivity, Radio Science, INSAR, Topography and Spectroscopy) a cui la Sapienza partecipa con un contributo fondamentale, è risultata vincitrice nella selezione delle missioni planetarie della Nasa. Lo ha comunicato la Nasa stessa il 2 giugno scorso nell’ambito della selezione delle prossime missioni di classe Discovery da 500 milioni di dollari.

VERITAS sarà lanciata tra il 2026 e il 2028 e ospiterà a bordo una strumentazione molto sofisticata finanziata dall’Agenzia spaziale italiana (ASI) a cui ha contribuito il gruppo di ricerca guidato da Luciano Iess, composto da giovani ricercatori della Sapienza.

“La forte presenza italiana nel team scientifico che ha portato alla selezione di VERITAS rappresenta un ulteriore esempio del ruolo della nostra università nella ricerca spaziale e nell’esplorazione del sistema solare – dichiara Luciano Iess, professore del Dipartimento di Ingegneria meccanica e aerospaziale della Sapienza – Questa missione ci permetterà di dare risposta a interrogativi che sono ormai rimasti aperti troppo a lungo”.

Veritas Venere
Un’immagine radar di quella che appare come una recente colata lavica, ripresa dalla sonda Magellan (NASA) piu’ di 25 anni fa

Venere infatti ha sempre suscitato grande interesse e fascino nella comunità scientifica. Gli unici dati globali sulla sua superficie e struttura interna sono stati forniti dalla sonda Magellan (NASA) più di 25 anni fa (1994-95). Da sempre indicato come il pianeta cugino della Terra per le dimensioni, massa e distanza dal Sole molto simili, Venere ha però intrapreso, per cause ancora ignote, un percorso evolutivo estremamente diverso da quello del nostro pianeta, al punto che oggi è uno dei luoghi più inospitali del sistema solare. La sua densa atmosfera, composta in gran parte di anidride carbonica e nubi di acido solforico, ha una pressione al suolo 90 volte maggiore di quella terrestre e temperature medie di 460 °C. Tuttavia studi recenti indicano per Venere un passato molto diverso e assai più simile a quello della Terra.

Veritas Terra Venere
La Terra e Venere fianco a fianco, viste dallo spazio (quest’ultima attraverso il radar della sonda Magellan)

VERITAS si propone di dare una risposta alle molte domande della comunità scientifica riguardanti non solo l’evoluzione passata, ma anche quella presente e futura, in particolare ricercando la presenza di vulcani attivi e di processi dinamici superficiali, quali la tettonica a placche. VERITAS sarà inoltre in grado di determinare la composizione e struttura interna del pianeta, fornendo ulteriori indizi per la comprensione non solo dei pianeti rocciosi, ma anche di una classe di esopianeti con caratteristiche simili.

La missione sarà coordinata da Suzanne E. Smrekar (Jet Propulsion Laboratory, California Institute of Technology) e costituisce, insieme a DaVinci+, che studierà l’atmosfera del pianeta, una delle due missioni della Nasa a Venere.

Nel team scientifico di VERITAS, il gruppo italiano, coordinato da Luciano Iess (Co-Lead dell’esperimento di gravità), è composto da giovani ricercatori del Centro di Ricerca Aerospaziale Sapienza (CRAS), del Dipartimento di Ingegneria meccanica aerospaziale (DIMA) e del Dipartimento di Ingegneria dell’Informazione, Elettronica e Telecomunicazioni (DIET). I ricercatori del CRAS-DIMA (Gael Cascioli, Fabrizio De Marchi, Paolo Racioppa), hanno condotto, attraverso simulazioni numeriche, la definizione dell’esperimento di gravità, dedicato alla determinazione della struttura interna del pianeta. I ricercatori del DIET (Roberto Seu e Marco Mastrogiuseppe, Co-Lead del radar VISAR) hanno contribuito allo sviluppo di tecniche di elaborazione dei dati del radar ad apertura sintetica, con lo scopo di individuare la presenza di processi geologici superficiali recenti. Gaetano di Achille, dell’Istituto Nazionale di Astrofisica, completa la partecipazione italiana con le competenze sulla struttura geologica del pianeta.

“Il successo di VERITAS – commenta Gael Cascioli, dottorando in Ingegneria aeronautica e spaziale presso il DIMA – è passato anche attraverso la fiducia che è stata riposta nei giovani ricercatori e ricercatrici che, come me, hanno portato entusiasmo, competenza ed energia nel team scientifico internazionale”.

 

Link:

NASA: https://www.nasa.gov/press-release/nasa-selects-2-missions-to-study-lost-habitable-world-of-venus

ASI: https://www.asi.it/#divSlideshow

 

Testo e foto dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma

Scoperta la firma molecolare della SLA

Un nuovo studio condotto dalla Sapienza in collaborazione con il laboratorio dell’Istituto Pasteur-Italia ha identificato i potenziali marcatori della progressione della Sclerosi Laterale Amiotrofica (SLA): sono piccole molecole di RNA non codificante, i microRNA. Lo studio è stato da poco pubblicato su Cell Death Discovery

Foto di Arek Socha 

Sclerosi laterale amiotrofica (SLA). Nota anche come malattia dei motoneuroni perché causa una graduale perdita di queste cellule che impartiscono ai muscoli il comando del movimento. È una malattia degenerativa che porta progressivamente alla paralisi e al decesso del paziente entro pochi anni dalla comparsa dei sintomi.

Il decorso non è però uguale in tutti pazienti, e fino a oggi, le basi molecolari che potessero spiegarlo erano sconosciute: molti biomarcatori sono stati descritti per diverse patologie neurodegenerative, ma per nessuno di loro era stata riscontrata una specifica correlazione con la SLA.

Ora, il lavoro sinergico di diversi centri di ricerca clinica, coordinato da Antonio Musarò e Irene Bozzoni, della Sapienza Università di Roma e del laboratorio dell’Istituto Pasteur-Italia, ha portato a identificare i potenziali biomarcatori prognostici della SLA. Si tratta di molecole di microRNA (miRNA) che non contengono informazioni per la formazione di proteine, ma che spesso risultano alterate in alcune condizioni patologiche e che possono anche essere rilasciate nel sangue.

In questo studio, pubblicato su Cell Death Discovery, sono stati selezionati e analizzati quantitativamente, ogni tre mesi durante la progressione della malattia, cinque miRNA. I risultati hanno mostrato che queste molecole sembrano essere predittive del decorso della malattia. “Il nostro studio è il primo a quantificare i miRNA circolanti nei pazienti con SLA e a farlo durante la progressione della malattia permettendo così di dare un significato prognostico a tre delle cinque molecole studiate – spiega Antonio Musarò – e rappresenta una base da cui partire per mettere a punto dei test sierologici per la valutazione di queste molecole nelle persone affette da SLA”.

“Un’ottima integrazione di competenze tra ricerca e clinica” aggiunge Irene Bozzoni.

“Quantificare i livelli di queste molecole − continua Musarò – potrebbe essere un valido aiuto per la gestione clinica di questi pazienti. I microRNA che abbiamo analizzato sembrano essere la firma molecolare della SLA e l’uso dei loro livelli sierici per suddividere i pazienti secondo aggressività e velocità di progressione della malattia potrà servire ad arruolarli nei trial clinici in modo più preciso, proprio in relazione a una specifica firma molecolare”.

Lo studio è stato parzialmente supportato da Fondazione Roma, ASI, ARiSLA, ERC e dai progetti dei centri di ricerca coinvolti.

 

Riferimenti:

A longitudinal study defined circulating microRNAs as reliable biomarkers for disease prognosis and progression in ALS human patients – Gabriella Dobrowolnyj, Julie Martone, Elisa Lepore, Irene Casola, Antonio Petrucci, Maurizio Inghilleri, Mariangela Morlando, Alessio Colantoni, Bianca Maria Scicchitano, Andrea Calvo, Giulia Bisogni, Adriano Chiò, Mario Sabatelli, Irene Bozzoni & Antonio Musarò – Cell Death Discovery, 2021. https://www.nature.com/articles/s41420-020-00397-6

 

Testo dalla Sapienza Università di Roma sull’identificazione dei potenziali marcatori della progressione della Sclerosi Laterale Amiotrofica (SLA)