News
Ad
Ad
Ad
Tag

Antartide

Browsing

SOLARIS: LE PRIME IMMAGINI IN BANDA RADIO DEL SOLE DAL NUOVO OSSERVATORIO ITALIANO IN ANTARTIDE

Da oggi, l’osservazione del Sole alle alte frequenze radio si arricchisce dei dati di Solaris, progetto scientifico coordinato dall’Istituto Nazionale di Astrofisica nell’ambito del Piano Nazionale di Ricerca in Antartide (PNRA). Partendo dal Polo Sud, Solaris punta a espandersi anche nell’emisfero settentrionale, creando una rete globale per un monitoraggio continuo del Sole, con importanti applicazioni per la meteorologia dello spazio.

Prima immagine del Sole in banda radio, osservato alla frequenza di 95 GHz in Antartide il 27 dicembre 2024. Crediti: Team Solaris
Prima immagine del Sole in banda radio, osservato alla frequenza di 95 GHz in Antartide il 27 dicembre 2024. Crediti: Team Solaris

Milano, 3 marzo 2025 – L’osservatorio Solaris è un innovativo progetto scientifico e tecnologico – frutto di una collaborazione tra diverse istituzioni scientifiche nazionali coordinate dall’Istituto Nazionale di Astrofisica (INAF), dall’Università degli Studi di Milano e dall’Università di Milano-Bicocca nell’ambito del PNRA (Piano Nazionale di Ricerca in Antartide) – finalizzato allo sviluppo di un sistema di monitoraggio continuo del Sole alle alte frequenze radio, per studi di fisica fondamentale, climatologia spaziale e interazioni Terra-Sole.

Nonostante sia attivo da pochissimo tempo e ancora nelle fasi iniziali di sviluppo (è infatti passato poco più di un anno dalla sua costituzione), Solaris ha già prodotto dati interessanti dal punto di vista scientifico per applicazioni di climatologia spaziale, in particolare mappe solari che consentono di studiare in banda radio a 95 gigahertz l’evoluzione della regione attiva che ha prodotto le tempeste solari responsabili dell’aurora di capodanno, visibile anche alle nostre latitudini. Le immagini sono state ottenute nelle scorse settimane, e sono tuttora in fase di analisi e interpretazione da parte di un team multidisciplinare di esperti.

“La possibilità di monitorare, comprendere e prevedere la mutevole fenomenologia solare e il suo notevole impatto con l’ambiente spaziale e il nostro pianeta è una sfida che acquista sempre più importanza” dice Alberto Pellizzoni, astrofisico INAF e responsabile scientifico del progetto Solaris, che prosegue: “Per affrontare questa sfida è necessario investire per trasformare e potenziare strumenti già esistenti o crearne di nuovi in una efficiente rete solare internazionale, anche nel contesto degli accordi in essere tra diversi Enti in Italia (INAF, INGV, ASI, Aeronautica Militare e varie Università) per sviluppare servizi dedicati allo Space Weather, e capire come il Sole influisca sulle nostre tecnologie e la nostra vita sulla Terra”.

Il progetto Solaris prevede l’implementazione di ricevitori radioastronomici dedicati e intercambiabili su piccoli radiotelescopi della classe di 2.6 metri di diametro, già presenti in Antartide nelle basi italiane Mario Zucchelli e Concordia e adattati per osservazioni solari ad alta frequenza, dell’ordine delle decine di giga hertz (Ghz). Ciò consente di ricevere onde radio emesse dal Sole, la cui lunghezza d’onda varia da qualche centimetro a qualche millimetro. Con questo tipo di osservazioni è possibile avere una nuova “finestra” in cui studiare il Sole e i suoi fenomeni, rilevando con precisione la temperatura e i brillamenti della corona solare e fare previsioni sulle possibili tempeste geomagnetiche. Al progetto, oltre alle sedi INAF di Cagliari, Bologna, Trieste, Milano e alle Università degli Studi di Milano e Milano-Bicocca, partecipano le Università di Roma Sapienza, Tor Vergata e Roma Tre, l’Agenzia Spaziale Italiana, l’Aeronautica Militare Italiana, l’Università Cà Foscari di Venezia, il Consiglio Nazionale delle Ricerche.

Francesco Cavaliere e Marco Potenza, del Dipartimento di Fisica dell’Università di Milano, affermano: “Vediamo finalmente venire alla luce i primi risultati di un lungo progetto a cui abbiamo lavorato per quasi dieci anni, dopo che il PNRA ci aveva chiesto di prenderci carico delle infrastrutture nelle due basi. Il lavoro da fare è ancora moltissimo, ma i primi risultati sono di grande soddisfazione anche in funzione delle scarsissime risorse che abbiamo avuto a disposizione. La riuscita di questa prima fase è anche una valorizzazione delle attività svolte proprio a Milano, dove abbiamo un telescopio prototipo con cui validare tutte le procedure e risolvere gran parte dei problemi prima di arrivare a lavorare al Polo”.

“Solaris rappresenta uno dei progetti di punta del PNRA in campo astrofisico ed uno tra i più promettenti programmi astrofisici che operano nelle aree polari a livello internazionale – sostiene Massimo Gervasi, docente dell’Università di Milano-Bicocca e membro del Physical Science Group dello SCAR (Scientific Committee on Antarctic Research) -. L’analisi delle immagini di Solaris, correlata con le immagini fornite dai satelliti a più alte energie da un lato e i dati sulle particelle energetiche solari dall’altro, aiuterà a comprendere meglio i fenomeni fisici che stanno alla base delle emissioni solari energetiche”.

Gallery, crediti per le foto: Luca Teruzzi – Università di Milano

In presenza di condizioni di visibilità del cielo ottimali come quelle antartiche, Solaris sarà l’unica installazione a offrire un monitoraggio continuo del Sole ad alte frequenze radio permettendo di osservare le variazioni che avvengono nella cromosfera solare, uno strato dell’atmosfera della nostra stella in cui si formano fenomeni altamente energetici come brillamenti ed espulsioni di massa coronale. Monitorare le variazioni in questa banda radio permette di identificare segnali precursori di tempeste geomagnetiche, che potrebbero interferire con le nostre tecnologie nello spazio e a terra.

Gallery, crediti per le foto: Francesco Cavaliere – Università di Milano

La scelta di posizionare a una latitudine così meridionale Solaris non è dovuta solo alla limpidezza dell’atmosfera, garantita dalla bassa umidità che altrimenti assorbirebbe i segnali radio ad alta frequenza, ma anche e soprattutto alla lunga persistenza del Sole nel cielo durante l’estate antartica (che corrisponde al nostro periodo invernale), seppure molto basso rispetto all’orizzonte. Nei pressi dei poli terrestri, infatti, è possibile – durante i rispettivi periodi estivi – osservare la nostra stella per oltre 20 ore al giorno.

Per poter offrire un monitoraggio solare costante durante tutto l’anno, il progetto Solaris sarà dunque implementato anche nell’emisfero settentrionale con lo sviluppo di una stazione sulle Alpi (presso l’Osservatorio climatico Testa Grigia del CNR, a 3500 metri s.l.m., in Valle D’Aosta) e altre in Scandinavia e regioni Artiche, grazie all’interesse internazionale destato da queste prospettive.

Il Sito web del progetto Solaris: https://sites.google.com/inaf.it/solaris

Testo e immagini dall’Ufficio Stampa Direzione Comunicazione ed Eventi istituzionali Università Statale di Milano e dagli Uffici Stampa dell’Istituto Nazionale di Astrofisica e dell’Università degli Studi di Milano-Bicocca

Ophiuroid Optimum: grazie alle stelle serpentine antartiche è stata identificata un nuovo periodo climatico della Terra

Pubblicato su Scientific Reports lo studio del dipartimento di Scienze della Terra dell’Università di Pisa su una carota di sedimento marino dell’Antartide

Un gruppo di ricercatori e ricercatrici del Dipartimento di Scienze della Terra dell’Università di Pisa ha identificato un nuovo periodo climatico del nostro pianeta denominato “Ophiuroid Optimum” che va dal 50 al 450 d.C.

Lo studio pubblicato sulla rivista Scientific Reports è stato condotto in collaborazione con l’Università Ca’ Foscari di Venezia e il Museo Nazionale di Storia Naturale del Lussemburgo. Ricercatori e ricercatrici hanno analizzato una carota di sedimento marino raccolta ad una profondità di 462 m sotto il livello del mare nell’Edisto Inlet, un fiordo nel Mare di Ross occidentale in Antartide.

Lo studio della carota ha consentito di ricostruire la storia climatica della Terra negli ultimi 3600 anni evidenziando anche periodi già noti come il caldo medievale, fra il 950 e il 1250 d.C., e la piccola età glaciale, dal 1300 sino al 1850 d.C.. Durante l’intervallo di tempo denominato “Ophiuroid Optimum”, nell’area antartica dell’Edisto Inlet, si sono susseguite estati australi caratterizzate dall’assenza di ghiaccio marino ed importanti fioriture algali. Il persistere di queste condizioni ambientale ha permesso lo sviluppo di un’ampia comunità “bentonica”, ossia di organismi acquatici, animali e vegetali che vivono vicino ai fondali, ricca in stelle serpentine.

Questa carota di sedimento ci ha consentito di effettuare degli studi paleoecologici e paleoclimatici ad altissima risoluzione – spiega Giacomo Galli dottorando fra gli Atenei di Pisa e Ca’ Foscari Venezia – questo perché è in gran parte fatta di fango costituito principalmente da diatomee, cioè piccole alghe unicellulari con guscio siliceo, a cui si aggiungono foraminiferi che sono organismi unicellulari con guscio che può fossilizzare, e resti di ofiure, cioè animali noti con il nome di stelle serpentine, echinodermi simili alle stelle marine. In particolare, gli abbondanti resti fossili delle stelle serpentine hanno permesso di identificare e caratterizzare il nuovo periodo climatico”.

La nostra comprensione del clima presente, nonché la possibilità di modellare quello futuro, è possibile solo grazie ai dati che derivano dalle informazioni sul clima del passato – conclude la professoressa Morigi dell’Università di Pisa – ogni tassello che ci aiuta a comprendere meglio la storia climatica del nostro Pianeta ha enormi implicazione nell’aiutarci a capire come questa si evolverà nel prossimo futuro”.

Hanno partecipato alla ricerca per il dipartimento della di Scienze della terra dell’Università di Pisa Giacomo Galli, la professoressa Caterina Morigi, responsabile di vari progetti per la ricerca in Antartide (Programma Nazionale di Ricerche in Antartide, PNRA) ed in Artide (Programma di Ricerca in Artico, PRA) e Karen Gariboldi, ricercatrice esperta di diatomee. Fra gli altri autori Ben Thuy, ricercatore presso il Museo Nazionale di Storia Naturale del Lussemburgo, uno dei maggiori esperti di ofiuroidi fossili al mondo.

Riferimenti bibliografici:

Galli, G., Morigi, C., Thuy, B. et al. Late Holocene echinoderm assemblages can serve as paleoenvironmental tracers in an Antarctic fjord, Sci Rep 14, 15300 (2024), DOI: https://doi.org/10.1038/s41598-024-66151-5

Nella foto, la bivalve Adamussium colbecki, il riccio Sterechinus neumayeri, la spugna Homaxinella balfourensis, la stella serpentina Ophionotus victoriae, ragni di mare Colossendeis. Foto NSF/USAP, di Steve Clabuesch, in pubblico dominio
L’immagine ha lo scopo di mostrare una specie di stelle serpentine, Ophionotus victoriae, i cui fossili sono stati centrali in questa ricerca che ha individuato il nuovo periodo climatico Ophiuroid Optimum. Nella foto, la bivalve Adamussium colbecki, il riccio Sterechinus neumayeri, la spugna Homaxinella balfourensis, la stella serpentina Ophionotus victoriae, ragni di mare Colossendeis. Foto NSF/USAP, di Steve Clabuesch, in pubblico dominio

Testo dal Polo Comunicazione CIDIC – Centro per l’innovazione e la diffusione della cultura dell’Università di Pisa.

DIMINUZIONE DEL GHIACCIO MARINO E BIODIVERSITÀ: Anche l’Università di Padova nel progetto WOBEC. Insieme a undici partner guidati dall’Istituto Alfred Wegener valuterà la biodiversità nel Mare di Weddell in Antartide

Le profondità del Mare di Weddell ospitano diverse comunità biotiche composte da spugne, coralli e innumerevoli altri organismi adattati all’ambiente freddo. Con il progredire dei cambiamenti climatici, questa regione polare potrebbe offrire un rifugio per organismi vegetali e animali che dipendono dal ghiaccio, dal krill alle foche di Weddell. Nell’ambito del nuovo progetto europeo “Weddell Sea Observatory of Biodiversity and Ecosystem Change” (WOBEC) l’Istituto Alfred Wegener, in qualità di coordinatore di un consorzio di undici istituzioni europee e statunitensi, tra le quali il Dipartimento di Biologia dell’Università di Padova, getterà le basi per osservazioni sistematiche a lungo termine dei potenziali cambiamenti in questo ecosistema unico. Il progetto, che ha ottenuto un finanziamento di circa 1,9 milioni di euro e si baserà sulle più recenti scoperte scientifiche, svilupperà una strategia per monitorare i cambiamenti nel Mare di Weddell, una regione candidata come area marina protetta su proposta dell’UE e di altri Stati. La riunione di avvio del WOBEC si terrà a Bremerhaven dall’11 al 14 giugno.

Il Mare di Weddell è il più grande mare dell’Oceano Meridionale ed è ricchissimo di biodiversità. Qui foche e pinguini imperatore partoriscono i loro piccoli, il krill si nutre di microalghe sotto le banchise attirando pesci, balene e uccelli marini. Sul fondo del mare si riproducono milioni di pesci-ghiaccio (“icefish”), pesci senza emoglobina, circondati da giardini sottomarini di spugne di vetro (“glass sponges”), anemoni e lumache di mare. Alcuni di questi luoghi raggiungono un livello di biodiversità paragonabile a quello delle barriere coralline tropicali.

Chiara Papetti con pesce
Chiara Papetti

Undici istituti di otto Paesi si sono uniti nel progetto WOBEC e nei prossimi tre anni le ricercatrici e i ricercatori partecipanti determineranno lo stato della comunità biotica del Mare di Weddell, stabilendo uno scenario iniziale di riferimento per un monitoraggio a lungo termine dell’ecosistema nell’Oceano Meridionale in trasformazione. WOBEC è uno dei 33 progetti dell’importante programma dell’Unione Europea BiodivMon, sotto l’egida di Biodiversa+, il partenariato europeo per la biodiversità. Il progetto è partito ad aprile 2024 con una riunione di apertura a Tallinn, in Estonia. Ai partner del progetto è stato assegnato un budget di circa 1,9 milioni di euro di sostegno finanziario.

Il team del Dipartimento di Biologia dell’Università di Padova, sostenuto dal Ministero dell’Università e della Ricerca (MUR) con un contributo di quasi 200 mila euro, è coordinato dalla prof.ssa Chiara Papetti e include la prof.ssa Isabella Moro, il dr. Alessandro Vezzi e i giovani ricercatori dr. Luca Schiavon, Alessia Prestanti e Federica Stranci.

«Ci aspettiamo che i pesci antartici, per i loro adattamenti peculiari all’ambiente polare e per i loro cicli vitali strettamente connessi a quelli degli altri numerosi componenti della comunità marina antartica, possano fungere da indicatori dei cambiamenti nell’abbondanza e distribuzione della biodiversità nel Mare di Weddell» aggiunge Chiara Papetti che, con i suoi collaboratori, si occupa di studiare la connessione tra popolazioni di pesci antartici nell’Oceano Meridionale.

Chiara Papetti progetto WOBEC
Chiara Papetti

Testo e foto dall’Ufficio Stampa dell’Università di Padova

IL GENOMA “IMMENSO” DEL KRILL (EUPHASIA SUPERBA) – Sequenziato il genoma del krill antartico: è 15 volte quello umano ed è il più grande di tutto il mondo animale mai sequenziato fino ad ora. Su «Cell» lo studio internazionale firmato anche da un team di ricercatori dell’Università di Padova che aiuta a comprendere meglio gli effetti del riscaldamento globale.

Il krill antartico (Euphausia superba) è l’organismo animale più abbondante sul pianeta, con una biomassa totale compresa tra i 300 e i 500 milioni di tonnellate. Questo piccolo gamberetto riveste un ruolo vitale per l’ecosistema antartico poiché rappresenta il principale collegamento tra i produttori primari che compongono il fitoplancton e i livelli più alti della catena alimentare come uccelli marini, foche, pinguini e balene. Grazie alla sua enorme biomassa, il krill incide in modo significativo su fondamentali processi biogeochimici globali quali i cicli del carbonio e il riciclo del ferro: studiarne la biologia e comprenderne le potenzialità di adattamento a un ambiente in continua evoluzione a causa degli effetti del riscaldamento globale risulta, quindi, fondamentale. Fino ad ora, l’impossibilità di ricostruire la sequenza del genoma di krill – ben 15 volte più grande di quello umano – ha rappresentato un ostacolo tecnico insormontabile per l’approfondimento degli aspetti fisiologici, molecolari e genetici del krill.

Nella ricerca dal titolo The enormous repetitive Antarctic krill genome reveals environmental adaptations and population insights, pubblicata su «Cell» e firmata da Changwei Shao del Yellow Sea Fisheries Research Institute di Qingdao in collaborazione con un team di ricercatori del Dipartimento di Biologia dell’Università di Padova – composto da Cristiano De Pittà, Gabriele Sales e Alberto Biscontin (ora all’Università di Udine) –, grazie alle più innovative tecnologie di sequenziamento e ai più aggiornati metodi di analisi è stato possibile ricostruire per la prima volta l’intero genoma di krill che risulta essere il più grande di tutto il mondo animale mai sequenziato fino ad ora.

Le sue enormi dimensioni sembrano essere il risultato della duplicazione e spostamento di numerosi segmenti di DNA – gli elementi trasponibili – in posizioni diverse del genoma, e non di duplicazioni dell’intero genoma, come osservato in altre specie. In particolare, sono stati identificati due eventi recenti di accumulo degli elementi trasponibili, collegati entrambi a cambiamenti climatici, che potrebbero essere responsabili delle attuali grandi dimensioni del genoma.

«Il krill si estende dal circolo polare antartico fino alle coste meridionali dell’America latina e dell’Australia: questi ambienti sono caratterizzati da condizioni ambientali molto diverse, soprattutto in termini di temperatura, fotoperiodo e disponibilità di cibo. Questa elevata distribuzione geografica è dovuta alle grandi capacità adattative che il krill ha sviluppato per vivere in un ecosistema, quello antartico, soggetto a variazioni estreme nel corso dell’anno; si pensi ad esempio al ciclo stagionale della banchisa o alla notte polare» spiega Cristiano De Pittà, co-autore dello studio dell’Università di Padova.

Cristiano De Pittà
Cristiano De Pittà

«In tal senso, un ruolo fondamentale è svolto dall’orologio circadiano che controlla a livello molecolare l’espressione ritmica giornaliera e stagionale di numerosi geni – continua Alberto Biscontin, co-autore dello studio e ricercatore dell’Università di Padova al momento della ricerca –. Il sequenziamento del genoma ha permesso di identificare 625 geni la cui espressione risulta essere sotto il controllo diretto dell’orologio endogeno e potrebbero, quindi, rappresentare il fulcro del processo di adattamento fisiologico e comportamentale di questo organismo alle estreme variazioni stagionali a cui è sottoposto».

Alberto Biscontin
Alberto Biscontin

La presenza della corrente circumpolare antartica (ACC), inoltre, è responsabile di altissimi livelli di connettività tra le diverse aree geografiche. Per anni la popolazione di krill antartico è stata ritenuta geneticamente omogenea: il sequenziamento del genoma ha portato all’identificazione di milioni di nuovi marcatori genetici (Single Nucleotide Polymorphisms) che hanno permesso, per la prima volta, di eseguire una completa analisi della struttura della popolazione di krill antartico mettendo in luce le tracce genetiche di quattro diverse popolazioni ancestrali ancora presenti in krill provenienti da altrettante regioni geografiche.

«Il genoma di Euphausia superba, oltre ad essere una sfida tecnologica vinta, riapre il dibattito sul significato biologico dei grandi genomi e rappresenta una preziosissima risorsa che fornirà nuovi e importanti elementi per una comprensione sempre maggiore della biologia e del ruolo ecologico di questa specie» conclude Gabriele Sales, anche lui co-autore dello studio dell’ateneo patavino.

Gabriele Sales
Gabriele Sales

Link alla ricerca: https://www.sciencedirect.com/science/article/pii/S0092867423001071

Titolo: The enormous repetitive Antarctic krill genome reveals environmental adaptations and population insights – «Cell» – 2023

Autori: Changwei Shao, Shuai Sun, Kaiqiang Liu, Jiahao Wang, Shuo Li, Qun Liu, Bruce E. Deagle, Inge Seim, Alberto Biscontin, Qian Wang, Xin Liu, So Kawaguchi, Yalin Liu, Simon Jarman, Yue Wang, Hong-Yan Wang, Guodong Huang, Jiang Hu, Bo Feng, Cristiano De Pittà, Shanshan Liu, Rui Wang, Kailong Ma, Yiping Ying, Gabriele Sales, Tao Sun, Xinliang Wang, Yaolei Zhang, Yunxia Zhao, Shanshan Pan, Xiancai Hao, Yang Wang, Jiakun Xu, Bowen Yue, Yanxu Sun, He Zhang, Mengyang Xu, Yuyan Liu, Xiaodong Jia, Jiancheng Zhu, Shufang Liu, Jue Ruan, Guojie Zhang, Huanming Yang, Xun Xu, Jun Wang, Xianyong Zhao, Bettina Meyer, Guangyi Fan

Krill antartico genoma

Testo e foto dall’Ufficio Stampa dell’Università degli Studi di Padova.

GHIACCIAI MINACCIATI DAL CLIMA: SCIENZIATI A 4100 METRI PER SALVARE LA ‘MEMORIA’ DEL GRAND COMBIN

ghiacciai clima Grand Combin
Ghiacciai minacciati dal clima: foto di archivio dalla ricognizione sul Grand Combin del 2018. Credit: Riccardo Selvatico per Cnr e Università Ca’ Foscari Venezia

ICE MEMORY: STOP ALLA MISSIONE SUL GRAN COMBIN

GHIACCIAIO DIFFICILE, SCIENZIATI RIENTRATI

 

VENEZIA, 21 Settembre 2020 – Dopo tre tentativi interrotti a una ventina di metri di profondità, il team italo-svizzero di scienziati del programma Ice Memory ha dovuto lasciare questa mattina il campo sul massiccio del Grand Combin. I ricercatori hanno operato per una settimana a 4.100 metri di quota sul ghiacciaio Corbassiere. Giorni di temperature elevate, con massime sempre sopra lo zero, hanno reso più difficile del previsto l’estrazione dei campioni di ghiaccio.

Il team sul ghiacciaio era composto da 6 glaciologi e paleoclimatologi dell’Istituto di Scienze Polari del Consiglio nazionale delle ricerche (Cnr-Isp), dell’Università Ca’ Foscari Venezia e del centro di ricerca svizzero Paul Scherrer Institut (Psi). Con loro una guida alpina e a valle, nel borgo aostano di Ollomont, un ricercatore a supporto.

In due punti gli scienziati hanno incontrato una transizione inaspettata, probabilmente delle ‘lenti’ di ghiaccio molto resistenti, che hanno bloccato e anche danneggiato il carotatore. Determinati a portare a termine la missione, grazie al supporto a valle, erano riusciti a far trasportare riparare in una notte la strumentazione nel laboratorio del costruttore, nei pressi di Berna.

Nel fine settimana il terzo tentativo, spostato a una decina di metri dai precedenti, si è arrestato ancora una volta attorno ai 20 metri, determinando lo ‘stop’ alle operazioni, suggerito anche dalle previsioni di instabilità meteo che avrebbero reso difficile per i prossimi giorni un rientro a valle in sicurezza.

Rinviato a una futura missione, dunque, l’obiettivo di prelevare tre carote di ghiaccio, veri e propri archivi della storia climatica della regione alpina da analizzare e conservare per le prossime generazioni di scienziati.

“L’acqua ha complicato le operazioni. Non ci aspettavamo di trovare il ghiacciaio in queste condizioni – afferma Carlo Barbante, direttore dell’Istituto di Science polari del Cnr e docente all’Università Ca’ Foscari Venezia – dovremo cambiare metodo di perforazione, sperando di non essere arrivati troppo tardi e di riuscire per la prima volta ad estrarre una carota di ghiaccio completa dal Grand Combin, in un’area in cui la calotta raggiunge i 70 metri di profondità”.

Negli ultimi 170 anni il ghiacciaio Corbassiere ha perso circa un terzo della sua area, con un arretramento della lingua glaciale di circa 3,5 chilometri.

Parte dei campioni che gli scienziati volevano prelevare era destinato alla ‘biblioteca dei ghiacci’ che il programma internazionale Ice Memory creerà in Antartide. Ice Memory è una corsa contro il tempo per portare al sicuro questi archivi, mettendoli a disposizione delle future generazioni di scienziati.

Comprendere il clima e l’ambiente del passato permette di anticipare i cambiamenti futuri. I ghiacciai montani conservano la memoria del clima e dell’ambiente dell’area in cui si trovano, ma si stanno ritirando inesorabilmente a causa del riscaldamento globale, ponendo questo inestimabile patrimonio scientifico in pericolo.

Quella sul Grand Combin è stata la prima di una serie di spedizioni finanziate dal Ministero dell’Istruzione, dell’Università e della Ricerca (con il Fondo Integrativo Speciale per la Ricerca, Fisr) che proseguirà con i ghiacciai italiani del Monte RosaMarmoladaMontasio e Calderone.

È possibile sostenere l’impegno dei glaciologi partecipando alla campagna di crowdfunding lanciata dall’Università Ca’ Foscari Venezia: https://sostienici.unive.it/projects/la-memoria-dei-ghiacciai

Per saperne di più sul progetto: https://www.icememory.it

Per gli aggiornamenti provenienti dai ricercatori sul campo: Facebook e Twitter.

Il team: Margit Schwikowski (team leader, Psi), Theo Jenk (Psi), Thomas Singer (Psi), Jacopo Gabrieli (Cnr/Ca’ Foscari), Fabrizio de Blasi (Cnr/Ca’ Foscari), Rachele Lodi (Cnr/Ca’ Foscari), Paolo Conz (guida alpina). Al campo base i ricercatori di Cnr e Ca’ Foscari: Federico Dallo (Cnr/Ca’ Foscari).

 

VENEZIA – Un team italo-svizzero di scienziati è salito la mattina del 14 Settembre sul massiccio del Grand Combin, a 4.100 metri di quota, per estrarre dal ghiacciaio Corbassiere due campioni (carote di ghiaccio) da destinare alla ‘biblioteca dei ghiacci’ che il programma internazionale Ice Memory creerà in Antartide. Ice Memory è una corsa contro il tempo per portare al sicuro questi archivi, mettendoli a disposizione delle future generazioni di scienziati.

Comprendere il clima e l’ambiente del passato permette di anticipare i cambiamenti futuri. I ghiacciai montani conservano la memoria del clima e dell’ambiente dell’area in cui si trovano, ma si stanno ritirando inesorabilmente a causa del riscaldamento globale, ponendo questo inestimabile patrimonio scientifico in pericolo.

Negli ultimi 170 anni il ghiacciaio Corbassiere ha perso circa un terzo della sua area, con un arretramento della lingua glaciale di circa 3,5 chilometri.

Sul ghiacciaio del Grand Combin vivranno e opereranno per circa due settimane 6 glaciologi e paleoclimatologi dell’Istituto di Scienze Polari del Consiglio nazionale delle ricerche (Cnr-Isp), dell’Università Ca’ Foscari Venezia e del centro di ricerca svizzero Paul Scherrer Institut (Psi). Le buone condizioni meteo saranno fondamentali per la riuscita dell’impresa: sarà possibile evacuare solo in elicottero. Saranno supportati dai colleghi che seguiranno la missione dal campo base nel borgo aostano di Ollomont.

L’obiettivo è estrarre tre carote di ghiaccio profonde 80 metri e del diametro di 7,5 centimetri. Si tratterà dei primi campioni completi del ghiacciaio del Grand Combin. Due verranno conservate per il futuro nell’archivio creato appositamente nella stazione Concordia sul plateau antartico, l’altra sarà analizzata nei laboratori congiunti di Ca’ Foscari e Cnr a Venezia ed al Psi.

ghiacciai clima Grand Combin
Ghiacciai minacciati dal clima: foto di archivio dalla ricognizione sul Grand Combin del 2018. Credit: Riccardo Selvatico per Cnr e Università Ca’ Foscari Venezia

Quella sul Grand Combin è la prima di una serie di spedizioni finanziate dal Ministero dell’Istruzione, dell’Università e della Ricerca (con il Fondo Integrativo Speciale per la Ricerca, Fisr) che proseguirà con i ghiacciai italiani del Monte RosaMarmoladaMontasio e Calderone.

È possibile sostenere l’impegno dei glaciologi partecipando alla campagna di crowdfunding lanciata dall’Università Ca’ Foscari Venezia: https://sostienici.unive.it/projects/la-memoria-dei-ghiacciai

Per saperne di più sul progetto: https://www.icememory.it

Per gli aggiornamenti provenienti dai ricercatori sul campo: Facebook e Twitter.

Parteciperanno alla spedizione: Margit Schwikowski (team leader, Psi), Theo Jenk (Psi), Thomas Singer (Psi), Jacopo Gabrieli (Cnr/Ca’ Foscari), Fabrizio de Blasi (Cnr/Ca’ Foscari), Rachele Lodi (Cnr/Ca’ Foscari), Paolo Conz (guida alpina). Al campo base i ricercatori di Cnr e Ca’ Foscari: Federico Dallo (Cnr/Ca’ Foscari).

 

La scienza delle “carote di ghiaccio”

Foto di archivio dalla ricognizione sul Grand Combin del 2018. Credit: Riccardo Selvatico per Cnr e Università Ca’ Foscari Venezia

Analizzando le bolle d’aria che la neve accumula strato dopo strato sul ghiacciaio nel corso dei secoli, gli scienziati sono oggi in grado di identificare le tracce dell’evoluzione delle temperature e delle concentrazioni di composti chimici. Si tratta di analisi impensabili pochi decenni fa. Per questo, la missione di Ice Memory ha lo scopo di assicurare campioni di qualità agli scienziati che, tra qualche decennio, avranno nuovi metodi e tecnologie a disposizione per analizzarli.

Foto di archivio dalla ricognizione sul Grand Combin del 2018. Credit: Riccardo Selvatico per Cnr e Università Ca’ Foscari Venezia

“Per comprendere meglio la risposta del clima della terra alle continue emissioni e quindi intraprendere concrete azioni di mitigazione ed adattamento, è essenziale guardare al passato – spiegano i ricercatori – È necessario, infatti, capire come il clima abbia reagito alla naturale ciclicità delle variazioni dei gas serra. Grazie alle carote di ghiaccio è possibile ricostruire questa ciclicità”.

L’esempio emblematico è quello della carota del progetto europeo EPICA estratta in Antartide e lunga oltre 3000 metri, che ha permesso di ricostruire la storia del clima della terra negli ultimi 740.000 anni riconoscendo i cicli glaciali e interglaciali che si sono susseguiti nel tempo. Particolari carote estratte dai ghiacci alpini, per esempio sul Monte Rosa e sull’Ortles, hanno permesso di ricostruire l’evoluzione del clima fino a oltre 5000 anni fa nonostante le inferiori profondità di perforazione (70 – 80 metri).

Foto di archivio dalla ricognizione sul Grand Combin del 2018. Credit: Riccardo Selvatico per Cnr e Università Ca’ Foscari Venezia

Ice Memory

Ice Memory è un programma internazionale che ha l’obiettivo di fornire, per le decadi e i secoli a venire, archivi e dati sulla storia del clima e dell’ambiente fondamentali sia per la scienza sia per ispirare le politiche per la sostenibilità e il benessere dell’umanità. Ice Memory ambisce a federare le comunità internazionali scientifica e istituzionale per creare in Antartide un archivio di carote di ghiaccio dai ghiacciai attualmente in pericolo di ridursi o scomparire. Gli scienziati sono convinti che questo ghiaccio contenga informazioni di valore tale da richiedere attività di ricerca anche su campioni di ghiacciai scomparsi.

Foto di archivio dalla ricognizione sul Grand Combin del 2018. Credit: Riccardo Selvatico per Cnr e Università Ca’ Foscari Venezia

Per Ice Memory, quella sul Grand Combin è la seconda missione sui ghiacciai alpini dopo quella del 2016 sul Monte Bianco. Altre spedizioni internazionali hanno permesso di mettere al sicuro gli archivi dei ghiacciai Illimani (Bolivia), Belukha e Elbrus (Russia).

Ice Memory è un programma congiunto tra Università Grenoble Alpes, Università Ca’ Foscari Venezia, Istituto nazionale francese per le ricerche sullo sviluppo sostenibile (Ird), Cnrs, Cnr, e con Istituto polare francese (Ipev) e Programma nazionale per le ricerche in Antartide (Pnra) per quanto riguarda le attività alla stazione Concordia in Antartide. Ice Memory ha il patrocinio delle commissioni italiana e francese dell’Unesco.

ghiacciai clima Grand Combin
Ghiacciai minacciati dal clima: foto di archivio dalla ricognizione sul Grand Combin del 2018. Credit: Riccardo Selvatico per Cnr e Università Ca’ Foscari Venezia

Testo, immagini e video dall’Ufficio Comunicazione Università Ca’ Foscari Venezia sui ghiacciai minacciati dal clima e gli scienziati a 4100 metri per salvare la ‘memoria’ del Grand Combin.

ghiacciai clima Grand Combin
Ghiacciai minacciati dal clima: foto di archivio dalla ricognizione sul Grand Combin del 2018. Credit: Riccardo Selvatico per Cnr e Università Ca’ Foscari Venezia