News
Ad
Ad
Ad
Tag

Aniello Mennella

Browsing

INAUGURATO QUBIC: UN MODO NUOVO DI STUDIARE L’UNIVERSO PRIMORDIALE

 
Oggi, mercoledì 23 novembre, viene ufficialmente inaugurato in Argentina il telescopio QUBIC (Q-U Bolometric Interferometer for Cosmology), uno strumento innovativo che osserverà il fondo cosmico a microonde, l’eco residua del Big Bang, da un sito desertico di alta quota (5000 m) sulle Ande argentine, vicino alla località San Antonio de Los Cobres.
Alla cerimonia, che prevede una visita al telescopio, partecipano i rappresentanti degli Istituti finanziatori del progetto e del team scientifico internazionale.

Il progetto vede l’Italia protagonista grazie ai contributi scientifici e tecnologici forniti dall’INFN (Istituto Nazionale di Fisica Nucleare) e dalle Università degli Studi di Milano, Università di Milano-Bicocca, Università di Roma “Tor Vergata” e Sapienza Università di Roma.

QUBIC si concentrerà sulla misura del segnale causato dall’interazione delle onde gravitazionali primordiali con la radiazione elettromagnetica che permea l’universo.
Dopo il suo sviluppo e l’integrazione avvenuta presso i laboratori europei delle Università e degli enti di ricerca coinvolti nella collaborazione, QUBIC è arrivato in Argentina, nella città di Salta, nel luglio 2021, dove è stato calibrato e testato in laboratorio.
Inaugurato QUBIC
I risultati di queste attività sono riportati in otto articoli apparsi sul “Journal of Cosmology and Astroparticle Physics” ad aprile di quest’anno e hanno confermato il corretto funzionamento dello strumento e dell’interferometria bolometrica, ossia la tecnica di nuova concezione su cui si baseranno le osservazioni di QUBIC, che combina l’elevatissima sensibilità dei rivelatori bolometrici raffreddati quasi allo zero assoluto (-273 °C) con la precisione degli strumenti interferometrici.
L’obiettivo di osservare i debolissimi effetti di polarizzazione nelle microonde originatesi nelle primissime fasi dell’espansione dell’universo dopo il Big Bang, ovvero la direzione in cui il campo elettricomagnetico a esse associato oscilla mentre si propaga, ha reso necessario sviluppare e realizzare uno strumento complesso e unico nel suo genere. Oggi QUBIC rappresenta infatti una risorsa unica nel panorama mondiale delle misure sull’universo primordiale.

“Non c’è altro modo di investigare sperimentalmente con esperimenti a terra quei fenomeni che si pensa siano avvenuti durante la cosiddetta ‘inflazione cosmica’, quando l’energia in gioco era spaventosamente grande. QUBIC è quindi importante sia per la cosmologia sia per la fisica fondamentale”, spiega Silvia Masi, docente presso Sapienza Università di Roma e ricercatrice INFN, che coordina la partecipazione italiana all’esperimento.

“QUBIC – aggiunge Oliviero Cremonesi, presidente della Commissione Scientifica Nazionale per le ricerche di Fisica Astroparticelare dell’INFN – mira a misurare la polarizzazione del fondo cosmico a microonde con una possibilità unica di individuare i segni lasciati dalle onde gravitazionali liberate nei primi istanti di vita dell’universo”.
L’efficacia di QUBIC e del metodo di misura impiegato per studiare l’universo primordiale sono state verificate dalla collaborazione nel corso del lungo periodo compreso tra i primi test condotti in laboratorio, a Parigi, e l’arrivo dello strumento in Argentina, nel laboratorio di Salta, dove sono state effettuate le prime osservazioni del cielo. L’installazione dell’esperimento a San Antonio de Los Cobres, avvenuta durante il mese di ottobre, sancisce quindi un successo che giunge al termine un periodo di lunga preparazione e che consentirà, grazie alla straordinaria trasparenza e stabilità dell’atmosfera del sito di osservazione, di iniziare misure ultrasensibili.
“Il team responsabile dell’installazione di QUBIC, al quale ha partecipato anche Francesco Cavaliere, responsabile dell’officina della Statale di Milano, ha svolto un lavoro eccellente in pochissimo tempo, in condizioni particolarmente impegnative a causa dell’altitudine e del forte vento in quota. Le prime misure dimostreranno ‘sul campo’ l’efficacia dell’interferometria bolometrica osservando sorgenti astronomiche. Approssimativamente fra un anno, lo strumento verrà inoltre reso ancora più competitivo, aumentando il numero di antenne e rivelatori, in modo da poter eseguire le misure di interesse cosmologico entro tre anni”, illustra Aniello Mennella, docente all’Università Statale di Milano e ricercatore INFN.
“La misura di un segnale così debole – specifica Mario Zannoni, docente all’Università di Milano-Bicocca e ricercatore INFN – verrà ritenuta esente da errori sistematici solo se si avranno risultati consistenti provenienti da strumenti molto diversi. Proprio per questo motivo QUBIC, unico interferometro bolometrico, rappresenta una risorsa insostituibile nello studio dei primi attimi di vita dell’universo”.
“Grazie alle capacità multispettrali e di autocalibrazione, QUBIC produrrà dati del tutto originali e complementari a quelli degli altri esperimenti, offrendo ai ricercatori innumerevoli possibilità di controllo incrociato e quindi una robustezza senza pari dei risultati”, conclude Giancarlo De Gasperis, ricercatore presso il Dipartimento di Fisica dell’Università di Roma “Tor Vergata” e INFN.
QUBIC è il risultato della collaborazione di 130 ricercatori, ingegneri e tecnici in Francia, Italia, Argentina, Irlanda e Regno Unito. Lo strumento è stato integrato a Parigi presso i laboratori APC nel 2018 e calibrato durante il 2019-2021.
Il contributo italiano è stato fondamentale per lo sviluppo dello strumento, e continuerà ad esserlo nelle fasi successive dell’esperimento. Lo strumento è ospitato in un criostato, realizzato nei laboratori della Sapienza e della Sezione di Roma dell’INFN, capace di raffreddare vicino allo zero assoluto non solo i rivelatori, ma anche tutto il sistema ottico dell’interferometro. Lo stesso gruppo ha realizzato anche il sistema crio-meccanico che permette di misurare lo stato di polarizzazione della radiazione. Italiane sono anche altre componenti criogeniche, che lavorano a una temperatura inferiore a -270 °C, come le avanzatissime antenne corrugate che raccolgono la radiazione dal cielo, realizzate nei laboratori dell’Università e della Sezione INFN di Milano Statale, mentre le ottiche che la focalizzano sui rivelatori e il sistema di otturatori che permette di variare la configurazione dell’interferometro e di autocalibrarlo sono realizzate dall’Università e dalla Sezione INFN di Milano Bicocca.
“L’inizio della presa dati di QUBIC è un segno tangibile dell’interesse dell’INFN per le ricerche sulla radiazione cosmica di fondo ed è stato reso possibile anche grazie a un significativo contributo dell’INFN”, conclude Marco Pallavicini, membro della Giunta Esecutiva dell’INFN.
Inaugurato QUBIC
Inaugurato QUBIC: un modo nuovo di studiare l’universo primordiale
RIFERIMENTI
● Pagina web di QUBIC: http://qubic.in2p3.fr/wordpress/
● Numero speciale di JCAP (Journal of Cosmology and Astroparticle Physics):
https://iopscience.iop.org/journal/1475-7516/page/Special%20Issues
Articoli correlati:
https://scientificult.it/2022/04/21/qubic-un-modo-nuovo-di-studiare-luniverso-primordiale/
Testo, video e foto dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma

QUBIC, un modo nuovo di studiare l’universo primordiale

Escono oggi, giovedì 21 aprile, su un numero speciale della rivista “Journal of Cosmology and Astroparticle Physics”, otto articoli a firma della collaborazione internazionale QUBIC (Q&U Bolometric Interferometer for Cosmology), che sta realizzando in Argentina un telescopio per lo studio dell’universo appena nato che si avvarrà di una tecnica innovativa.

QUBIC, infatti, osserverà e mapperà le proprietà del fondo cosmico a microonde, l’eco residua del Big Bang, concentrandosi sulla misura di particolari componenti dell’orientamento dell’oscillazione delle microonde della radiazione cosmica di fondo sul piano del cielo (polarizzazione), denominate modi-B, indicative delle possibili perturbazioni indotte dalle onde gravitazionali generate nei primi istanti di vita dell’universo.

Il progetto vede l’Italia protagonista grazie ai contributi scientifici e tecnologici forniti dall’INFN (Istituto Nazionale di Fisica Nucleare) e dalle Università di Milano Statale, Milano-Bicocca, Università di Roma “Tor Vergata” e Sapienza Università di Roma. QUBIC osserverà il cielo a partire dalla fine del 2022, da un sito desertico di alta quota (5000 m) in Argentina, vicino alla località San Antonio de Los Cobres.

QUBIC
Rotatore criogenico. Crediti: archivio fotografico QUBIC

Dopo il suo sviluppo e l’integrazione avvenuta presso i laboratori europei delle Università e degli enti di ricerca coinvolti nella collaborazione, QUBIC è arrivato in Argentina, nella città di Salta, nel luglio 2021, dove si sta procedendo alle fasi finali di calibrazione e di test in laboratorio. I risultati di queste attività, presentati negli otto articoli apparsi su ‘Journal of Cosmology and Astroparticle Physics, hanno confermato il corretto funzionamento dello strumento e dell’’interferometria bolometrica’, ossia la tecnica di nuova concezione su cui si baseranno le osservazioni di QUBIC, che combina l’elevatissima sensibilità dei rivelatori raffreddati quasi allo zero assoluto (-273 °C) e capaci di misurare l’energia della radiazione del fondo cosmico trasformandola in calore (bolometri), con la precisione degli strumenti interferometrici.

“QUBIC è uno strumento originale ed estremamente complesso: per questo era necessario pubblicare in anticipo tutti i dettagli del suo hardware e delle nuove metodologie di sfruttamento dei dati raccolti. Inoltre, con queste lunghe ed esaustive calibrazioni abbiamo dimostrato in laboratorio l’efficienza di QUBIC come interferometro bolometrico. È un passo essenziale per le successive misure di interesse per la cosmologia e la fisica fondamentale”, spiega Silvia Masi, docente presso Sapienza Università di Roma e ricercatrice INFN, che coordina la partecipazione italiana all’esperimento.

Grazie alla sua estrema sensibilità, che consentirà di distinguere i dettagli di ciascuno dei ‘pixel’ in cui sarà suddivisa la mappa celeste, QUBIC potrà discriminare i modi-B dai segnali generati dalle altre sorgenti del cielo, fornendo una prova diretta della teoria dell’inflazione. Questa è oggi la teoria di riferimento per la descrizione di ciò che sarebbe avvenuto nei primi istanti dell’universo, sviluppata negli anni ‘80 per spiegare alcune caratteristiche dell’universo, fra cui la ‘piattezza’ e l’estrema omogeneità dello spaziotempo.

QUBIC
Criostato. Crediti: archivio fotografico QUBIC

Secondo la teoria dell’inflazione, la rapidissima fase di espansione dell’universo subito dopo il Big Bang, durata meno di un centomillesimo di miliardesimo di miliardesimo di miliardesimo di secondo (circa 10-32 secondi), avrebbe lasciato un debole fondo di onde gravitazionali, che a loro volta avrebbero prodotto particolari debolissime tracce, detti modi-B, nella polarizzazione del fondo cosmico di microonde. In pratica, le onde elettromagnetiche del fondo cosmico non oscillerebbero in direzioni casuali. Sarebbero invece leggermente preferite direzioni che in cielo formano un disegno vorticoso.

Alla precisione delle misure che saranno effettuate da QUBIC contribuiranno inoltre la limpidezza e l’assenza di umidità che contraddistinguono l’aria del sito di Alto Chorrillo in cui sarà istallato il telescopio, a circa 5000 metri sul livello del mare, sul plateau La Puna nell’Argentina settentrionale, vicino alla cittadina di San Antonio de los Cobres, nella provincia di Salta.

“QUBIC verrà portato nel sito di Alto Chorrillo entro pochi mesi. Le prime misure dimostreranno l’efficienza del nuovo metodo dell’interferometria bolometrica per la prima volta osservando sorgenti astronomiche. Lo strumento verrà poi completato inserendo un maggiore numero di rivelatori, in modo da poter eseguire le misure di interesse cosmologico entro tre anni. La strada è lunga, e QUBIC si presenta come estremamente originale e complementare a tutti gli altri che cercano di misurare questo elusivo segnale primordiale”, illustra Aniello Mennella, ricercatore INFN e docente all’Università di Milano.

La ricerca dei modi-B rappresenta una sfida formidabile e centrale per fisici e astrofisici. Il segnale da misurare è così debole da richiedere rivelatori ultrasensibili e telescopi di grande precisione, anche per rimuovere, durante l’analisi dati, altri segnali polarizzati di origine locale che potrebbero confondere la misura. Le misure di QUBIC saranno perciò contemporanee a quelle di una mezza dozzina di altri esperimenti nel mondo che hanno lo stesso obiettivo scientifico. A differenza di questi ultimi, che producono immagini direttamente tramite telescopi a singola apertura, QUBIC sarà l’unico strumento a effettuare osservazioni raccogliendo le microonde da molte aperture e facendole interferire.

“La misura di un segnale così debole”, dice Mario Zannoni, ricercatore INFN e docente all’Università di Milano-Bicocca, “verrà ritenuta esente da errori sistematici solo se si avranno risultati consistenti provenienti da strumenti molto diversi. Proprio per questo motivo QUBIC, unico interferometro bolometrico, rappresenta una risorsa insostituibile nella ricerca dei modi-B e nello studio dei primi attimi dell’universo”. Grazie alle capacità multispettrali e di autocalibrazione, “QUBIC produrrà dati del tutto originali e complementari a quelli degli altri esperimenti, offrendo agli analisti innumerevoli possibilità di controllo incrociato e quindi una robustezza ineguagliabile dei risultati”, conclude Giancarlo De Gasperis, ricercatore INFN e docente all’Università di Roma “Tor Vergata”.

QUBIC è il risultato della collaborazione di 130 ricercatori, ingegneri e tecnici in Francia, Italia, Argentina, Irlanda e Regno Unito. Lo strumento è stato integrato a Parigi presso i laboratori APC nel 2018 e calibrato durante il 2019-2021.

Il contributo italiano è stato fondamentale per lo sviluppo dello strumento, e continuerà ad esserlo nelle fasi successive dell’esperimento. Lo strumento è ospitato in un criostato, progettato e costruito nei laboratori della Sapienza e della Sezione di Roma dell’INFN, capace di raffreddare vicino allo zero assoluto non solo i rivelatori ma anche tutto il sistema ottico dell’interferometro. Lo stesso gruppo ha realizzato anche il sistema crio-meccanico che permette di ruotare i componenti ottici all’interno del criostato per misurare lo stato di polarizzazione della radiazione. Italiane sono anche altre componenti criogeniche, che lavorano a una temperatura inferiore a -270 °C, come le avanzatissime antenne corrugate che selezionano i fotoni da far interferire, realizzate nei laboratori dell’Università e della Sezione INFN di Milano Statale, mentre le ottiche che focalizzano i fotoni sui rivelatori e il sistema di otturatori che permette di variare la configurazione dell’interferometro e di autocalibrarlo sono realizzate dall’Università e dalla Sezione di Milano Bicocca. L’Università di Roma “Tor Vergata” e la Sezione INFN di Roma2 contribuisce invece allo sviluppo del complesso software di analisi dei dati.

Per maggiori informazioni:

 

Articoli correlati:

Inaugurato QUBIC: un modo nuovo di studiare l’universo primordiale

Testo dall’Ufficio Stampa Università di Milano-Bicocca e dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma, immagini dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma.