News
Ad
Ad
Ad
Tag

Angelo Zinzi

Browsing

LA LUNA E LA TERRA IN POSA PER LA CAMERA JANUS DURANTE IL PRIMO FLYBY DI JUICE

Nelle immagini raccolte dalla sonda ESA, oltre 400, crateri e paesaggi lunari, le isole degli arcipelaghi delle Hawaii e delle Filippine e immensi banchi di nuvole sull’Oceano Pacifico. Lo strumento italiano funziona alla perfezione.

Roma, 23 agosto 2024 – Si chiama JANUS la camera ottica che viaggia da oltre un anno a bordo della sonda ESA JUICE (Jupiter Icy Moon Explorer) e nei giorni scorsi – durante il primo flyby del sistema Luna-Terra della storia – ha acquisito immagini straordinarie del nostro satellite naturale e del nostro pianeta. La fionda gravitazionale doppia è avvenuta con successo la notte tra il 19 e 20 agosto scorsi: tale manovra, mai realizzata in precedenza anche per i notevoli rischi, ha permesso a JUICE di cambiare velocità e direzione di volo, preparando la sonda al successivo sorvolo ravvicinato di Venere previsto per agosto 2025.

La camera JANUS è stata progettata per studiare la morfologia e i processi globali regionali e locali delle lune ghiacciate di Giove e per eseguire la mappatura delle nubi del gigante gassoso. Lo strumento è stato realizzato da un consorzio di industrie a guida Leonardo sotto la responsabilità dell’Agenzia Spaziale Italiana (ASI). La camera JANUS è stata realizzata anche grazie alla collaborazione con l’agenzia tedesca DLR, il CSIC-IAA di Granada e il CEI-Open University di Milton Keynes. La responsabilità scientifica dello strumento è dell’Istituto Nazionale di Astrofisica (INAF).

La Luna e la Terra in posa per la camera JANUS durante il primo flyby di JUICE. Gallery

“Dopo oltre 12 anni di lavoro per proporre, realizzare e verificare lo strumento, questa è la prima occasione per toccare con mano dati simili a quelli che acquisiremo nel sistema di Giove a partire dal 2031”, commenta Pasquale Palumbo, ricercatore all’INAF di Roma e principal investigator del team che ha progettato, testato e calibrato la fotocamera JANUS. “Anche se il flyby è stato pianificato esclusivamente per facilitare il viaggio interplanetario fino a Giove, tutti gli strumenti a bordo della sonda hanno approfittato del passaggio in prossimità di Luna e Terra per acquisire dati, provare operazioni e tecniche di elaborazione con il vantaggio di conoscere già cosa stavamo osservando”, aggiunge.

“L’insieme degli strumenti italiani a bordo della missione JUICE è quanto di più tecnologicamente avanzato sia stato mai realizzato e consentirà di ottenere dei risultati scientifici di assoluta rilevanza consolidando la posizione di leadership raggiunta dall’Italia nell’ambito dell’esplorazione del sistema solare”, dichiara Barbara Negri responsabile dell’ufficio Volo Umano e Sperimentazione Scientifica dell’ASI. “Infatti, la nostra agenzia ha coordinato e gestito, oltre alla realizzazione della camera JANUS, la realizzazione del radar sotto-superficiale RIME, la realizzazione dell’esperimento di radio scienza 3GM e la realizzazione della testa ottica dello spettrometro MAJIS a guida francese”, prosegue.

“A poco più di un anno dal lancio di JUICE, questo doppio passaggio ravvicinato ha rappresentato una pietra miliare per il viaggio della sonda verso la sua destinazione finale, commenta Angelo Zinzi responsabile per l’ASI dello strumento JANUS.

“Oltre ad aver ottenuto l’assistenza gravitazionale richiesta, i vari strumenti sono stati accesi e hanno operato in modalità simili a quelle attese intorno a Giove e ai suoi satelliti: i dati sono stati ottenuti, inviati a terra e processati così come previsto, mostrando l’ottima preparazione dei team di strumento coinvolti. La camera nel visibile JANUS e lo spettrometro MAJIS hanno inoltre sfruttato la possibilità di acquisire immagini quasi contemporanee con il satellite multispettrale PRISMA dell’ASI. Dopo un lungo lavoro di preparazione tra i vari team coinvolti è stato infatti possibile ottenere una serie di osservazioni PRISMA da poter confrontare con quelle di JANUS e MAJIS: queste saranno molto utili per testare le procedure di calibrazione e l’accuratezza dei due strumenti di JUICE coinvolti, così da rendere più robusto il lavoro scientifico futuro”, prosegue Zinzi.

“Mentre la Luna offre il vantaggio di conoscere quello che osserviamo – spiega Palumbo – il problema della Terra è la sua estrema variabilità temporale; si pensi alle nuvole che si muovono e cambiano nell’arco anche di minuti. Per ovviare a questo abbiamo pianificato osservazioni contemporanee con satelliti di osservazione della Terra: questo ci garantirà un termine di confronto.

Lo strumento italiano è equipaggiato con un sistema di 13 filtri (5 a banda larga e 8 a banda stretta) distribuiti nell’intervallo spettrale dal visibile al vicino infrarosso. Avere immagini della stessa zona in diversi filtri permette ai ricercatori di avere molto di più di semplici immagini a “colori”: le fotocamere che conosciamo acquisiscono le immagini con tre diversi filtri (rosso, verde e blu o RGB) depositati a scacchiera sullo stesso sensore, mentre JANUS ne posiziona ben 13 davanti al rivelatore coprendo un intervallo più ampio di quello percepibile dall’occhio umano.

Lo scopo primario dei dati raccolti da JANUS durante il doppio flyby è stato quello di valutare prestazioni e funzionalità dello strumento, non di eseguire misure scientifiche. Per questa ragione, le immagini (circa 200 della Luna e altrettante della Terra) sono state acquisite a diversi intervalli temporali, con diversi filtri, numerosi fattori di compressione e altrettanti tempi di integrazione.

“In alcuni casi – sottolinea il ricercatore – abbiamo provocato volontariamente un peggioramento della qualità utilizzando tempi di integrazione lunghi, ottenendo immagini per così dire ‘mosse’, in modo da testare algoritmi di recupero della risoluzione. In altri casi abbiamo parzialmente saturato l’immagine per studiare gli effetti indotti sulle zone non saturate”. E aggiunge: “abbiamo anche misurato per la prima volta e meglio del millesimo di grado l’allineamento fra il laser altimetro e la camera. Questo è un dato essenziale per integrare le risposte dei due strumenti”, dice Palumbo. Le immagini pubblicate oggi sono preliminari e non elaborate per un utilizzo scientifico.

Palumbo conclude commentando le immagini della Terra raccolte all’alba del 20 agosto: “L’osservazione della superficie dei satelliti ghiacciati di Giove, come per la Luna, non è disturbata dall’atmosfera. Al contrario, Giove è una gigantesca, dinamica e turbolenta atmosfera. Le immagini di JANUS della Terra, con diversi filtri, possono simulare quello che potremo fare a Giove: osservare diversi strati e componenti dell’atmosfera semplicemente cambiando filtro”.

JANUS permetterà l’acquisizione di immagini multi spettrali dei satelliti ghiacciati di Giove a una risoluzione e con una estensione 50 volte migliore delle camere inviate nel sistema gioviano in passato. La camera include anche un computer con un software che controlla tutte le funzionalità dello strumento, riceve i comandi e invia telemetria e dati a terra attraverso la grande antenna parabolica di JUICE.

Tutte le operazioni si sono svolte secondo quanto programmato e, come confermato dalle telemetrie, completate con successo. Attualmente i dati che stanno piano piano arrivando a terra, anche da RIME, 3GM e MAJIS (gli altri strumenti italiani) sono al vaglio del team scientifico.

Dopo il lancio della missione nell’aprile del 2023, le manovre gravitazionali previste nella tabella di marcia di JUICE sono fondamentali per avvicinare sempre di più la sonda verso il sistema di lune gioviano, che dista in media 800 milioni di km dal nostro pianeta, con il minor dispendio di propellente. Il sorvolo di Venere nel 2025 spingerà JUICE di nuovo verso la Terra. Gli altri flyby sono previsti a settembre 2026 e a gennaio 2029; l’arrivo su Giove è invece in programma per luglio 2031.


 

Per ulteriori informazioni:

Leonardo è responsabile industriale per la realizzazione, integrazione e test dello strumento JANUS, con il contributo di sottosistemi dal DLR di Berlino, CSIC-IAA di Granada e CEI-Open University di Milton Keynes. Le Agenzie Spaziali Italiana, Tedesca, Inglese (ASI, DLR e UKSA), con il Ministero della Ricerca Spagnolo, sono i principali finanziatori del progetto. JANUS è stata sviluppata da un team internazionale composto da Istituti e ricercatori situati in Italia, Germania, Spagna, Gran Bretagna, Francia, Usa, Giappone e Israele. Il team è guidato dall’INAF-IAPS di Roma e include partecipanti anche da altri istituti INAF (gli Osservatori di Padova, Roma, Napoli, Teramo e Catania), dal CISAS-Università di Padova e da altri istituti di ricerca e università.

Gli altri strumenti italiani a bordo della missione JUICE
RIME (Radar for Icy Moon Exploration) è un radar sottosuperficiale ottimizzato per penetrare la superficie ghiacciata dei satelliti Galileiani fino alla profondità di 9 Km con una risoluzione verticale fino a 30 m. Il radar RIME, è stato realizzato con la il contributo del Jet Propulsion Laboratory (JPL) della NASA che ne ha fornito la parte ricevente e trasmittente e ricevente.
3GM (Gravity and Geophysics of Jupiter and the Galilean Moons) è uno strumento per radio scienza che comprende un transponder in banda Ka e un oscillatore ultrastabile (USO), realizzato in collaborazione con l’agenzia spaziale Israeliana (ISA). Sarà utilizzato per studiare il campo di gravità fino alla decima armonica di Ganimede e l’estensione degli oceani interni sulle lune ghiacciate. L’esperimento 3GM sarà inoltre supportato dall’accelerometro ad alta precisione (HAA) necessario per calibrare i disturbi dinamici interni del satellite, in particolare dovuti al movimento del propellente nei serbatoi.
Importante, inoltre, il coinvolgimento italiano per la testa ottica dello strumento MAJIS (Moons and Jupiter Imaging Spectrometer), uno spettrometro iper-spettrale a immagine per osservare le caratteristiche e le specie minori della troposfera di Giove nonché per la caratterizzazione dei ghiacci e dei minerali sulle lune ghiacciate. MAJIS, di responsabilità francese è stato realizzato con un accordo bilaterale tra ASI e CNES e vede la partecipazione dell’INAF nel coordinamento delle attività scientifiche dello strumento.

Articoli correlati:

JANUS: apre gli occhi la camera della sonda JUICE

Testo, video e immagini dall’Ufficio stampa dell’Istituto Nazionale di Astrofisica (INAF).

LICIACUBE ANALIZZA I LUNGHI PENNACCHI DI DIMORPHOS

Roma, 28 febbraio 2024 – Il 26 settembre 2022 la sonda spaziale DART (Double Asteroid Redirection Test) della NASA – un oggetto da mezza tonnellata lanciato a 22.500 chilometri all’ora – ha colpito Dimorphos (il satellite dell’asteroide Didymos) nel corso del primo esperimento di difesa planetaria mai tentato nella storia, modificandone la traiettoria. Tutto questo “sotto gli occhi vigili” del cubesat dell’Agenzia Spaziale Italiana (ASI) LICIACube (Light Italian Cubesat for Imaging of Asteroids), che dopo un anno e mezzo ci restituisce un’ulteriore “fotografia” di ciò che è successo nei secondi successivi l’impatto. In un articolo pubblicato oggi sulla rivista Nature, il gruppo internazionale di ricercatrici e ricercatori guidati dall’Istituto Nazionale di Astrofisica (INAF) analizza la composizione della nube di detriti e di polvere (plume, in inglese) espulsa dall’asteroide Dimorphos in seguito all’impatto esplosivo.

La prima sonda interplanetaria made in italy (progettata, costruita e operata per l’ASI dalla società torinese Argotec) è parte integrante della missione statunitense e il team scientifico italiano di LICIACube è coordinato da INAF e ASI in collaborazione con l’Istituto di fisica applicata “Nello Carrara” del Consiglio Nazionale delle Ricerche (CNR-IFAC), il Politecnico di Milano, l’Università di Bologna e l’Università Parthenope di Napoli.

Gli strumenti a bordo di LICIACube, LUKE (LICIACube Unit Key Explorer) e LEIA (LICIACube Explorer Imaging for Asteroid), hanno inviato a terra dati straordinari prima e dopo l’impatto.

Elisabetta Dotto, ricercatrice presso l’INAF di Roma, prima autrice dell’articolo e coordinatrice del gruppo che lavora al programma LICIACube sin dalla sua ideazione, racconta:

“La fase scientifica è iniziata 71 secondi prima dell’impatto di DART, testimoniato ‘in diretta’ misurando una rapida variazione della luminosità del piccolo asteroide. Viaggiando ad una velocità relativa di circa 6,1 chilometri al secondo, LICIACube ha effettuato un sorvolo dell’oggetto raggiungendo, nel suo punto di massimo avvicinamento a Dimorphos, una distanza di soli 58 km, 174 secondi dopo l’impatto. LICIACube ha acquisito 426 immagini degli effetti prodotti dall’impatto”.

I risultati ottenuti da LICIACube sono importanti a livello scientifico per la comunità internazionale, trattandosi delle sole immagini raccolte in situ della prima missione di Difesa Planetaria mai condotta finora.

I pennacchi di Dimorphos sono simili alla coda di una cometa e sono generati dalla polvere espulsa nello spazio. A differenza delle comete, però, i “ciuffi” di Dimorphos sono stati generati artificialmente.

Ma come è cambiato Dimorphos dopo l’arrivo di DART? “La prima cosa stupefacente è stata che la superficie di Dimorphos – prosegue Dotto – non è stata più visibile a causa del materiale espulso. Oltre a testimoniare l’evento unico della deflessione di un asteroide grazie a un impatto cinetico, sono state ottenute immagini dettagliate di un asteroide binario che ci possono permettere di capire meglio la natura di questi oggetti. Poiché gli asteroidi sono ciò che resta di una fase intermedia del processo che ha portato alla formazione dei pianeti, i dati acquisiti forniscono informazioni importanti nello studio delle prime fasi di aggregazione del materiale che compone il Sistema solare”.

La ricercatrice INAF spiega che “il materiale espulso dal cratere di impatto ha formato un cono con un angolo di apertura di circa 140 gradi e una struttura complessa e disomogenea, caratterizzata da filamenti, granelli di polvere e massi singoli o raggruppati espulsi a seguito dell’impatto stesso di DART. Le immagini hanno mostrato che la parte più interna della coda aveva un colore bluastro e diventava via via più rossa con l’aumentare della distanza da Dimorphos. La velocità dei materiali espulsi varia da poche decine di m/s fino a circa 500 metri al secondo”.

Aggiunge Alessandro Rossi dell’ IFAC-CNR: “La complessa dinamica delle particelle  espulse dall’impatto costituisce  un’affascinante laboratorio di meccanica orbitale che verrà studiato a lungo dalla comunità delle scienze planetarie”.

Marco Zannoni, ricercatore presso il Dipartimento di Ingegneria Industriale (DIN) e responsabile tecnico delle attività affidate all’Università di Bologna, commenta:

“Il contributo dell’Università di Bologna, nell’ambito di questo progetto, ha riguardato la determinazione ed il controllo della traiettoria di LICIACube, a partire dai dati di tracking ricevuti dalle antenne di terra del Deep Space Network della NASA. La sfida più grande è stata quella di guidare il nanosatellite LICIACube, che si trovava a 10 milioni di chilometri dalla Terra e viaggiava a più di 6 chilometri al secondo, a posizionarsi nel punto giusto ed al momento giusto per scattare le foto dell’impatto di DART con Dimorphos”.

Angelo Zinzi, Project Scientist ASI per LICIACube, commenta così:

“Il lavoro pubblicato può essere considerato un punto di partenza per la missione DART-LICIACube e, più in generale, nell’ambito della difesa planetaria. Grazie al grande lavoro realizzato da gli enti e le industrie coinvolte nella missione LICIACube, con il coordinamento del team di progetto dell’ASI, è stato dimostrato che i cubesat sono ormai pronti per missioni sia tecnologiche sia scientifiche nello spazio profondo e che l’Italia è in grado di essere un attore principale in questo contesto”.

E aggiunge: “LICIACube ha permesso di ottenere immagini e dati altrimenti impossibili da acquisire e che hanno fornito un impulso fondamentale alla conoscenza dell’evento di impatto avvenuto tra la sonda DART e Dimorphos. È importante anche sottolineare che tutti i dati e il Software di archiviazione e calibrazione dati sono stati gestiti dal centro dati scientifico di ASI (SSDC), utilizzando standard internazionalmente riconosciuti per la corretta preservazione e la disseminazione del dato. A seguito di questo lavoro, sono già in fase di pubblicazione e/o revisione, altri lavori dai quali ottoneremo un’analisi dei dati di LICIACube di maggiore dettaglio e conoscenza”.

“Grazie al grande lavoro del team scientifico sulle immagini, il Politecnico di Milano collaborando con CNR ha potuto contribuire al raffinamento dei modelli di espulsione dei frammenti e al miglioramento dello studio dell’evoluzione del loro moto nel sistema binario asteroideo”,

sostiene Michèle Roberta Lavagna, professoressa di Flight Mechanics del Politecnico di Milano, Dipartimento di Scienze e Tecnologie Aerospaziali.

I dati a oggi ottenuti stanno dimostrando come, pur attraverso una piccola sonda, sia possibile raccogliere importanti dati scientifici e come, un team ben affiatato e coordinato possa ottenerne risultati unici di grande rilevanza scientifica.


 

Per ulteriori informazioni:

L’articolo “The Dimorphos ejecta plume properties revealed by LICIACube”, di E., Dotto, J.D.P., Deshapriya, I., Gai, P.H., Hasselmann, E., Mazzotta Epifani, G.,Poggiali, A., Rossi, G., Zanotti, A., Zinzi, I., Bertini, J.R., Brucato, M., Dall’Ora, V., Della Corte, S.L., Ivanovski, A., Lucchetti, M., Pajola, M., Amoroso, O., Barnouin, A., Campo Bagatin, A., Capannolo, S., Caporali, M., Ceresoli, N.L., Chabot, A.F., Cheng, G., Cremonese, E.G., Fahnestock, T.L., Farnham, F., Ferrari, L., Gomez Casajus, E., Gramigna, M., Hirabayashi, S., Ieva, G., Impresario, M., Jutzi, R., Lasagni Manghi, M., Lavagna6, J.-Y., Li, M., Lombardo, D., Modenini, P., Palumbo, D., Perna, S., Pirrotta, S.D., Raducan, D.C., Richardson, A.S., Rivkin, A.M., Stickle, J.M. Sunshine, P., Tortora, F., Tusberti, M., Zannoni, è stato pubblicato sulla rivista Nature.

Testo e immagini dagli Uffici Stampa INAF, ASI, CNR, Politecnico di Milano e Alma Mater Studiorum – Università di Bologna.