News
Ad
Ad
Ad
Tag

Agenzia Spaziale Italiana

Browsing

Studiare le onde di Alfvén, un particolare tipo di onde magnetiche nel Sole, per migliorare le previsioni sulla propagazione del vento solare

Capire appieno i processi fisici che governano l’attività del Sole, la nostra stella, è uno dei principali modi per migliorare la capacità di prevedere i fenomeni solari che possono produrre effetti nello spazio interplanetario e sui pianeti, in particolar modo la Terra, nell’ambito della cosiddetta meteorologia dello spazio (o space weather). Un nuovo passo in questa direzione arriva dal lavoro di un gruppo di ricercatrici e ricercatori dell’Istituto Nazionale di Astrofisica (INAF) e dell’Agenzia Spaziale Italiana (ASI) pubblicato oggi sulla rivista Physical Review Letters. Lo studio suggerisce che, attraverso l’osservazione dei moti e delle riflessioni di un particolare tipo di onde magnetiche che si propagano negli strati più esterni dell’atmosfera del Sole sia possibile risalire alle regioni da cui si è originato il vento solare che possiamo osservare e analizzare quando raggiunge l’ambiente terrestre, migliorando così le informazioni sul suo percorso nello spazio e, quindi, le previsioni dei suoi potenziali effetti sul nostro pianeta.

Immagine coronale del Sole a disco intero, acquisita dallo strumento AIA a bordo della missione spaziale Solar Dynamic Observatory della NASA, raffigurante la regione studiata nel lavoro pubblicato su PRL. Crediti: Adattata da Murabito et al. 2024 (PRL, https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.132.215201)
Immagine coronale del Sole a disco intero, acquisita dallo strumento AIA a bordo della missione spaziale Solar Dynamic Observatory della NASA, raffigurante la regione studiata nel lavoro pubblicato su PRL. Crediti: Adattata da Murabito et al. 2024 (PRL, https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.132.215201)

Il lavoro, guidato dalla ricercatrice INAF Mariarita Murabito, ha utilizzato i dati acquisiti dallo spettrografo ad alta risoluzione EIS a bordo della missione Hinode dell’agenzia spaziale giapponese JAXA e dallo spettropolarimetro italiano ad alta risoluzione IBIS realizzato dall’Istituto Nazionale di Astrofisica e installato fino al 2019 al telescopio Dst (New Mexico, USA) per studiare le onde di Alfvén. Queste, sono onde magnetiche prodotte nello strato visibile di colore rossastro dell’atmosfera solare, che prende il nome di cromosfera. Le onde di Alfvén possono trasportare quantità significative di energia lungo le linee del campo magnetico fino alla porzione più esterna dell’atmosfera solare, la corona, dove è stata osservata la presenza di un elevato flusso di questo tipo di onde. Infatti, nella corona, il campo magnetico gioca un ruolo fondamentale ed è responsabile di tutta l’attività solare che osserviamo: brillamenti, espulsioni di massa coronale, vento solare ed emissione di particelle energetiche.

Studi precedenti hanno rilevato che la composizione chimica della cromosfera e corona solare differiscono da quella della fotosfera. La teoria proposta nel 2004 da Laming per spiegare questo inatteso comportamento, attribuisce la variazione nella composizione chimica alla forza che agisce sulle particelle cariche quando esse si muovono nel campo elettromagnetico del Sole. Questo nuovo studio dimostra la connessione tra le onde di Alfvén e le anomalie di abbondanza degli elementi chimici presenti nella corona, misurando la direzione di propagazione delle onde stesse. Questa connessione è dovuta proprio all’azione di questa forza sul plasma della cromosfera.

“Le onde magnetiche e il loro legame con le anomalie chimiche erano state già rilevate nel 2021. Con il nostro studio abbiamo messo in evidenza, per la prima volta, la direzione di propagazione, ovvero la riflessione, di queste onde. Usando lo stesso modello teorico proposto e modificato negli ultimi 20 anni l’accordo con i dati è sorprendente” commenta l’autrice dell’articolo, Mariarita Murabito, ricercatrice dell’INAF.

Questa connessione tra le onde di Alfvén e le proprietà del vento solare offre uno sguardo innovativo su come le interazioni magnetiche nel Sole possano influenzare l’ambiente spaziale circostante, portando a una maggiore comprensione dei processi che governano la fisica solare e dell’influenza dell’attività solare sui pianeti e corpi minori del Sistema solare.

“Le proprietà chimiche del plasma solare restano invariate attraversando lo spazio interplanetario e possono essere utilizzate come tracciante delle sorgenti del vento solare e delle perturbazioni che in esso si propagano. Capire l’origine di questo tracciante ci offre uno strumento nuovo per comprendere in prospettiva in che modo il Sole governi le condizioni fisiche dello spazio interplanetario e quindi progredire anche nella comprensione dei fenomeni space weather” spiega Marco Stangalini, ricercatore dell’ASI e coautore dell’articolo. “Questi risultati, inoltre, ci permetteranno di sfruttare al meglio i dati ottenuti dalla missione Solar Orbiter dell’ESA e dalle future missioni Solar-C e MUSE, alle quali l’Italia contribuisce, e che si focalizzeranno sullo studio della dinamica dell’atmosfera solare”.

Per ulteriori informazioni:

L’articolo “Observation of Alfv́en Wave Reflection in the Solar Chromosphere: Ponderomotive Force and First Ionization Potential Effect” di Mariarita Murabito, Marco Stangalini, J. Martin Laming, Deborah Baker, Andy S. H. To, David M. Long, David H. Brooks, Shahin Jafarzadeh, David B. Jess, Gherardo Valori è stato pubblicato online sulla rivista Physical Review Letters.

 

Testo e immagini dagli Uffici Stampa INAF e ASI.

GRB 231115A: LA GALASSIA SIGARO SI ACCENDE CON UN MEGA BRILLAMENTO, UN RAPIDO LAMPO DI RAGGI GAMMA

Il satellite Integral, realizzato con un fondamentale contributo dell’Agenzia Spaziale Italiana, scopre il primo caso di giant flare proveniente da una magnetar fuori dalla Via Lattea. Lo studio a guida INAF pubblicato su Nature.

La sezione di cielo osservata dal rilevatore di raggi gamma sul satellite INTEGRAL dell’ESA. Uno dei due riquadri mostra i dati a raggi X della galassia M82 e l'altro mostra un'osservazione in luce visibile. Il cerchio blu sulle due immagini ritagliate indica la posizione corrispondente al brillamento gigante. Crediti: ESA/Integral, ESA/XMM-Newton, INAF/TNG, M. Rigoselli (INAF)
La sezione di cielo osservata dal rilevatore di raggi gamma sul satellite INTEGRAL dell’ESA. Uno dei due riquadri mostra i dati a raggi X della galassia M82 e l’altro mostra un’osservazione in luce visibile. Il cerchio blu sulle due immagini ritagliate indica la posizione corrispondente al brillamento gigante GRB 231115A. Crediti: ESA/Integral, ESA/XMM-Newton, INAF/TNG, M. Rigoselli (INAF)

Utilizzando i dati del satellite dell’Agenzia Spaziale Europea (ESA) Integral (International Gamma-Ray Astrophysics Laboratory), costruito con il contributo dell’Agenzia Spaziale Italiana (ASI) responsabile del telescopio principale IBIS, il 15 novembre 2023 un gruppo di ricercatrici e ricercatori guidati dall’Istituto Nazionale di Astrofisica (INAF) ha individuato l’improvvisa esplosione di un oggetto raro: per solo un decimo di secondo, un rapido lampo di raggi gamma è apparso dalla direzione di una luminosa galassia vicino alla nostra. Di cosa si tratta? Il team ha scoperto la presenza di un brillamento gigante (Giant Flare, in inglese) generato da una magnetar nella galassia Sigaro (conosciuta anche con le sigle M82 o NGC 3034), uno degli oggetti celesti più affascinanti che costellano il cielo. L’articolo relativo alla scoperta è stato pubblicato oggi sulla rivista Nature.

Particolare classe di stelle di neutroni (resti stellari super-densi delle esplosioni di supernovae), le magnetar sono i magneti più potenti dell’universo noti per emettere brevi esplosioni di raggi gamma che in genere durano meno di un secondo ma sono miliardi di volte più luminose del Sole. Le magnetar possono produrre brillamenti giganti, cioè brevi esplosioni durante le quali possono emettere in meno di un secondo l’energia che il Sole irradia in un milione di anni, ma individuarle è davvero arduo.

La scoperta è stata ottenuta grazie all’Integral Burst Alert System (IBAS), che permette la localizzazione in tempo reale di lampi di raggi gamma e altri fenomeni transienti nei raggi gamma. Nello specifico, Integral ha rilevato un lampo di raggi gamma solo per un decimo di secondo. Il software di IBAS, che esamina i dati ricevuti al data center scientifico Integral di Ginevra, ha determinato la localizzazione precisa di questo evento e l’ha distribuita agli astronomi di tutto il mondo solo tredici secondi dopo che Integral lo aveva rivelato.

“Quando il software automatico IBAS ci ha allertati per questo evento, ci  siamo subito resi conto che si trattava di qualcosa di speciale. Si sospetta da tempo che alcuni dei lampi di raggi gamma di breve durata (GRB, lampi luminosi di raggi gamma osservati al ritmo di uno al giorno da direzioni imprevedibili del cielo) potrebbero essere Giant Flare provenienti da magnetar nelle galassie vicine, ma ciò non era stato ancora dimostrato in maniera inequivocabile”, spiega Sandro Mereghetti, primo autore dell’articolo e ricercatore presso l’INAF di Milano.

Mereghetti aggiunge: “I brillamenti giganti sono la manifestazione più estrema delle magnetar, in termini di energia emessa e rapidità, ma non si conosce ancora bene cosa li produca”.

Quello scoperto dal team guidato da INAF (GRB 231115A) è il primo Giant Flare generato da una magnetar in una galassia che non appartiene al Gruppo Locale.

“Sono eventi estremamente rari, tanto che ne sono stati osservati solo tre in 50 anni: due nella nostra Galassia e uno nella Grande Nube di Magellano. Poterli rivelare anche in galassie più lontane, come nel presente caso, permette di studiarne un maggior numero e in condizioni più favorevoli”, sottolinea l’autore. “I casi precedenti di ‘candidati’ Giant Flare al di fuori del gruppo locale non erano stati individuati in tempo reale e le incertezze sulla loro posizione rende incerte anche le associazioni con galassie vicine”, continua.

“Integral è un telescopio spaziale longevo e a 22 anni dal lancio continua a fornire contributi sorprendenti”, sottolinea Elisabetta Cavazzuti, responsabile ASI del programma Integral. “Il team scientifico ha migliorato sempre più l’utilizzo di tutti gli apparati del satellite, sviluppando un software che sfrutta ogni singola informazione trasmessa dal telescopio anche in maniera completamente nuova. Questo modo di osservare e sfruttare gli strumenti in ottica sempre innovativa consente di raggiungere risultati importanti confermando che l’universo è fonte inesauribile di scoperte”.

La rilevazione del fenomeno con Integral ha avviato poi una serie di osservazioni rapide ad altre lunghezze d’onda (ottiche, X, radio) che hanno permesso di stabilirne la natura. Nell’articolo i ricercatori presentano, infatti, anche dati richiesti al satellite XMM-Newton e dati ottici provenienti da telescopi italiani dell’INAF (il TNG alle Canarie, lo Schmidt di Asiago e lo Schmidt di Campo Imperatore) e francesi (come il French Observatoire de Haute-Provence): se si fosse trattato di un lampo di raggi gamma causato dalla collisione di due stelle di neutroni, lo scontro avrebbe creato onde gravitazionali e avrebbe avuto un intenso bagliore residuo nei raggi X e nella luce visibile. Le osservazioni di XMM-Newton hanno mostrato solo il gas caldo e le stelle nella galassia.

L’articolo pubblicato su Nature conferma quindi un’ipotesi che si sospettava da diversi anni.

“Inoltre non è casuale che questo brillamento gigante provenga proprio da una delle galassie che sta formando nuove stelle di alta massa a un ritmo elevato. In queste regioni ci si aspetta, infatti, di trovare il maggior numero di stelle di neutroni e quindi di magnetar”, aggiunge Ruben Salvaterra,  ricercatore INAF di Milano e coautore dell’articolo.

Osservabile anche con piccoli telescopi, M82 è una galassia starburst (in cui appunto il processo di formazione stellare è eccezionalmente elevato) a spirale barrata che si trova a circa 12 milioni di anni luce dalla Terra, in direzione della costellazione dell’Orsa Maggiore. L’interazione gravitazionale con altre galassie vicine, in particolare M81, ha accelerato drasticamente il suo tasso di formazione stellare che è almeno dieci volte maggiore di quello della Via Lattea.

“Dopo questa scoperta, la galassia M82 diventa un ‘sorvegliato speciale’ da cui aspettarci altri eventi simili nei prossimi anni”, conclude Mereghetti.


 

Per altre informazioni:

L’articolo “A magnetar giant flare in the nearby starburst galaxy M82”, di S. Mereghetti et al., è stato pubblicato sulla rivista Nature.

Testo e immagine dagli Uffici Stampa ASI e Istituto Nazionale di Astrofisica – INAF

LICIACUBE ANALIZZA I LUNGHI PENNACCHI DI DIMORPHOS

Roma, 28 febbraio 2024 – Il 26 settembre 2022 la sonda spaziale DART (Double Asteroid Redirection Test) della NASA – un oggetto da mezza tonnellata lanciato a 22.500 chilometri all’ora – ha colpito Dimorphos (il satellite dell’asteroide Didymos) nel corso del primo esperimento di difesa planetaria mai tentato nella storia, modificandone la traiettoria. Tutto questo “sotto gli occhi vigili” del cubesat dell’Agenzia Spaziale Italiana (ASI) LICIACube (Light Italian Cubesat for Imaging of Asteroids), che dopo un anno e mezzo ci restituisce un’ulteriore “fotografia” di ciò che è successo nei secondi successivi l’impatto. In un articolo pubblicato oggi sulla rivista Nature, il gruppo internazionale di ricercatrici e ricercatori guidati dall’Istituto Nazionale di Astrofisica (INAF) analizza la composizione della nube di detriti e di polvere (plume, in inglese) espulsa dall’asteroide Dimorphos in seguito all’impatto esplosivo.

La prima sonda interplanetaria made in italy (progettata, costruita e operata per l’ASI dalla società torinese Argotec) è parte integrante della missione statunitense e il team scientifico italiano di LICIACube è coordinato da INAF e ASI in collaborazione con l’Istituto di fisica applicata “Nello Carrara” del Consiglio Nazionale delle Ricerche (CNR-IFAC), il Politecnico di Milano, l’Università di Bologna e l’Università Parthenope di Napoli.

Gli strumenti a bordo di LICIACube, LUKE (LICIACube Unit Key Explorer) e LEIA (LICIACube Explorer Imaging for Asteroid), hanno inviato a terra dati straordinari prima e dopo l’impatto.

Elisabetta Dotto, ricercatrice presso l’INAF di Roma, prima autrice dell’articolo e coordinatrice del gruppo che lavora al programma LICIACube sin dalla sua ideazione, racconta:

“La fase scientifica è iniziata 71 secondi prima dell’impatto di DART, testimoniato ‘in diretta’ misurando una rapida variazione della luminosità del piccolo asteroide. Viaggiando ad una velocità relativa di circa 6,1 chilometri al secondo, LICIACube ha effettuato un sorvolo dell’oggetto raggiungendo, nel suo punto di massimo avvicinamento a Dimorphos, una distanza di soli 58 km, 174 secondi dopo l’impatto. LICIACube ha acquisito 426 immagini degli effetti prodotti dall’impatto”.

I risultati ottenuti da LICIACube sono importanti a livello scientifico per la comunità internazionale, trattandosi delle sole immagini raccolte in situ della prima missione di Difesa Planetaria mai condotta finora.

I pennacchi di Dimorphos sono simili alla coda di una cometa e sono generati dalla polvere espulsa nello spazio. A differenza delle comete, però, i “ciuffi” di Dimorphos sono stati generati artificialmente.

Ma come è cambiato Dimorphos dopo l’arrivo di DART? “La prima cosa stupefacente è stata che la superficie di Dimorphos – prosegue Dotto – non è stata più visibile a causa del materiale espulso. Oltre a testimoniare l’evento unico della deflessione di un asteroide grazie a un impatto cinetico, sono state ottenute immagini dettagliate di un asteroide binario che ci possono permettere di capire meglio la natura di questi oggetti. Poiché gli asteroidi sono ciò che resta di una fase intermedia del processo che ha portato alla formazione dei pianeti, i dati acquisiti forniscono informazioni importanti nello studio delle prime fasi di aggregazione del materiale che compone il Sistema solare”.

La ricercatrice INAF spiega che “il materiale espulso dal cratere di impatto ha formato un cono con un angolo di apertura di circa 140 gradi e una struttura complessa e disomogenea, caratterizzata da filamenti, granelli di polvere e massi singoli o raggruppati espulsi a seguito dell’impatto stesso di DART. Le immagini hanno mostrato che la parte più interna della coda aveva un colore bluastro e diventava via via più rossa con l’aumentare della distanza da Dimorphos. La velocità dei materiali espulsi varia da poche decine di m/s fino a circa 500 metri al secondo”.

Aggiunge Alessandro Rossi dell’ IFAC-CNR: “La complessa dinamica delle particelle  espulse dall’impatto costituisce  un’affascinante laboratorio di meccanica orbitale che verrà studiato a lungo dalla comunità delle scienze planetarie”.

Marco Zannoni, ricercatore presso il Dipartimento di Ingegneria Industriale (DIN) e responsabile tecnico delle attività affidate all’Università di Bologna, commenta:

“Il contributo dell’Università di Bologna, nell’ambito di questo progetto, ha riguardato la determinazione ed il controllo della traiettoria di LICIACube, a partire dai dati di tracking ricevuti dalle antenne di terra del Deep Space Network della NASA. La sfida più grande è stata quella di guidare il nanosatellite LICIACube, che si trovava a 10 milioni di chilometri dalla Terra e viaggiava a più di 6 chilometri al secondo, a posizionarsi nel punto giusto ed al momento giusto per scattare le foto dell’impatto di DART con Dimorphos”.

Angelo Zinzi, Project Scientist ASI per LICIACube, commenta così:

“Il lavoro pubblicato può essere considerato un punto di partenza per la missione DART-LICIACube e, più in generale, nell’ambito della difesa planetaria. Grazie al grande lavoro realizzato da gli enti e le industrie coinvolte nella missione LICIACube, con il coordinamento del team di progetto dell’ASI, è stato dimostrato che i cubesat sono ormai pronti per missioni sia tecnologiche sia scientifiche nello spazio profondo e che l’Italia è in grado di essere un attore principale in questo contesto”.

E aggiunge: “LICIACube ha permesso di ottenere immagini e dati altrimenti impossibili da acquisire e che hanno fornito un impulso fondamentale alla conoscenza dell’evento di impatto avvenuto tra la sonda DART e Dimorphos. È importante anche sottolineare che tutti i dati e il Software di archiviazione e calibrazione dati sono stati gestiti dal centro dati scientifico di ASI (SSDC), utilizzando standard internazionalmente riconosciuti per la corretta preservazione e la disseminazione del dato. A seguito di questo lavoro, sono già in fase di pubblicazione e/o revisione, altri lavori dai quali ottoneremo un’analisi dei dati di LICIACube di maggiore dettaglio e conoscenza”.

“Grazie al grande lavoro del team scientifico sulle immagini, il Politecnico di Milano collaborando con CNR ha potuto contribuire al raffinamento dei modelli di espulsione dei frammenti e al miglioramento dello studio dell’evoluzione del loro moto nel sistema binario asteroideo”,

sostiene Michèle Roberta Lavagna, professoressa di Flight Mechanics del Politecnico di Milano, Dipartimento di Scienze e Tecnologie Aerospaziali.

I dati a oggi ottenuti stanno dimostrando come, pur attraverso una piccola sonda, sia possibile raccogliere importanti dati scientifici e come, un team ben affiatato e coordinato possa ottenerne risultati unici di grande rilevanza scientifica.


 

Per ulteriori informazioni:

L’articolo “The Dimorphos ejecta plume properties revealed by LICIACube”, di E., Dotto, J.D.P., Deshapriya, I., Gai, P.H., Hasselmann, E., Mazzotta Epifani, G.,Poggiali, A., Rossi, G., Zanotti, A., Zinzi, I., Bertini, J.R., Brucato, M., Dall’Ora, V., Della Corte, S.L., Ivanovski, A., Lucchetti, M., Pajola, M., Amoroso, O., Barnouin, A., Campo Bagatin, A., Capannolo, S., Caporali, M., Ceresoli, N.L., Chabot, A.F., Cheng, G., Cremonese, E.G., Fahnestock, T.L., Farnham, F., Ferrari, L., Gomez Casajus, E., Gramigna, M., Hirabayashi, S., Ieva, G., Impresario, M., Jutzi, R., Lasagni Manghi, M., Lavagna6, J.-Y., Li, M., Lombardo, D., Modenini, P., Palumbo, D., Perna, S., Pirrotta, S.D., Raducan, D.C., Richardson, A.S., Rivkin, A.M., Stickle, J.M. Sunshine, P., Tortora, F., Tusberti, M., Zannoni, è stato pubblicato sulla rivista Nature.

Testo e immagini dagli Uffici Stampa INAF, ASI, CNR, Politecnico di Milano e Alma Mater Studiorum – Università di Bologna.

LISA: c’è il via libera dell’ESA per la missione spaziale che rivelerà onde gravitazionali dal cosmo

La missione LISA, un trio di satelliti in orbita attorno al Sole, ha ottenuto l’“adozione” da parte dell’Agenzia Spaziale Europea ESA: ora si procederà alla costruzione, che consentirà l’osservazione dei segnali più sfuggenti dell’Universo, le onde gravitazionali. Cruciale il ruolo dell’Università di Milano-Bicocca

Milano, 26 gennaio 2024 – È arrivato il via libera alla missione spaziale LISA. Si tratta di un passaggio cruciale, denominato in gergo “adozione”, con cui ESA ha approvato la costruzione dei satelliti e della strumentazione di bordo con l’importante contributo di ASI, l’Agenzia Spaziale Italiana. Grazie a LISA, il cui nome sta per Laser Interferometer Space Antenna, si aprirà una nuova finestra sull’Universo: l’obiettivo è infatti costruire un osservatorio spaziale per la rivelazione delle onde gravitazionali provenienti da molteplici sorgenti cosmiche. Centrale, nell’ambito del programma scientifico Cosmic Vision dell’ESA in cui rientra questa missione, è il ruolo dell’Università di Milano-Bicocca e del team dalla professoressa Monica Colpi del dipartimento di Fisica “Giuseppe Occhialini” che ha ricoperto posizioni di guida in diversi gruppi di ricerca, in ESA e nel LISA Consortium, un consorzio internazionale di scienziati che ha definito gli obiettivi scientifici di LISA e progettato la missione.

LISA non è una sola navicella spaziale, ma un trio di satelliti in orbita attorno al Sole disposti ai vertici di un triangolo equilatero. Ogni lato del triangolo sarà lungo 2,5 milioni di km (più di sei volte la distanza Terra-Luna) e le navicelle si scambieranno raggi laser su questa distanza. Il lancio di LISA è previsto per il 2035 e avverrà a bordo di un razzo Ariane 6. 

Ma che cosa sono le onde gravitazionali che LISA potrà osservare? Albert Einstein, un secolo fa, aveva dimostrato nella sua teoria della Relatività Generale che corpi celesti molto massicci, quando accelerati, scuotono il tessuto dello spazio-tempo, producendo minuscole increspature note appunto come onde gravitazionali che viaggiano nell’Universo alla velocità della luce. Ora, grazie agli sviluppi tecnologici moderni, siamo in grado di rivelare il passaggio di queste onde, tra le più sfuggenti nell’Universo al fine di risalire alla natura delle loro sorgenti.

LISA catturerà onde gravitazionali provenienti dalle regioni più remote dell’Universo, causate dallo scontro tra buchi neri massicci che risiedono al centro delle galassie, milioni di volte più pesanti del nostro Sole. Questo permetterà agli scienziati di scoprire l’origine di questi oggetti, ricostruirne la storia e il ruolo giocato nell’evoluzione delle galassie. La missione sarà anche pronta ad ascoltare il “mormorio” gravitazionale della nascita del nostro Universo, e sarà una finestra aperta sui primi istanti dopo il Big Bang. Inoltre, LISA aiuterà i ricercatori a misurare con accuratezza la velocità di espansione dell’Universo usando la gravità e non la luce come messaggero, confrontando il risultato con misure ottenute con altre tecniche e missioni (come Euclid). LISA osserverà anche un elevatissimo numero di sorgenti nella nostra Galassia, tra cui sistemi binari stellari composti da nane bianche e stelle di neutroni: un’opportunità senza precedenti per studiare gli stadi evolutivi finali delle stelle. Misurando la loro posizione e distanza, LISA creerà una mappa della struttura della Via Lattea, osservando oltre la buia cortina del Centro Galattico. Insieme alla missione ESA Gaia, conosceremo come la nostra Galassia, il nostro habitat ambiente si sia formato.

«Il primo disegno di LISA risale agli anni Settanta: è stato un lungo viaggio che ci ha portato oggi, dopo salite e discese, all’“adozione”, ovvero al passo decisivo verso la costruzione di LISA», spiega Monica Colpi. «Cruciale è stato il successo della missione LISA Pathfinder e la scoperta da parte degli interferometri a Terra LIGO-Virgo-KAGRA di onde gravitazionali emesse da buchi neri stellari in collisione. Con LISA cattureremo le vibrazioni dello spazio-tempo provenienti dalla fusione di buchi neri giganti. Qui, all’Università di Milano-Bicocca, stiamo cercando di capire come e quando, nell’Universo, queste collisioni avvengono e come LISA le osserverà».

Come avverrà dunque l’osservazione delle onde gravitazionali? LISA impiegherà coppie di cubi di una lega di oro e platino – le cosiddette “masse di test” (ognuna poco più piccola di un cubo di Rubik) – che galleggeranno in “caduta libera” al centro di ogni satellite, provviste di speciali schermature da disturbi esterni. Le onde gravitazionali causeranno minuscoli cambiamenti nella distanza tra le masse di test di due satelliti, e la missione traccerà queste variazioni usando l’interferometria laser. Questa tecnica richiede di far propagare fasci laser da un satellite all’altro nella costellazione. Confrontando i segnali registrati misureremo cambiamenti nelle distanze tra le masse di test fino a un miliardesimo di millimetro. I satelliti devono essere progettati per assicurare che nulla, eccetto la geometria dello spazio-tempo, possa perturbare il moto delle masse, che saranno perciò in quasi perfetta caduta libera. I satelliti della missione seguiranno appunto le orme di LISA PAthfinder, che ha dimostrato che è possibile mantenere le masse test in caduta libera con un impressionante livello di precisione. Lo stesso sistema di propulsione con cui sono state equipaggiate le missioni ESA Gaia e Euclid garantirà che ogni satellite mantenga la posizione e l’orientazione richieste con grandissima accuratezza. 

Per rendere l’idea della complessità dell’operazione, Riccardo Buscicchio, ricercatore di Milano-Bicocca che lavora all’analisi dei dati prodotti da LISA, usa una metafora musicale:

«I rivelatori terrestri oggi in funzione ricevono segnali isolati, uno alla volta, un po’ come ascoltare brevi concerti per violino solista. Il tipico timbro dello strumento ci permette di individuarlo, anche in presenza di “rumore”.

I satelliti di LISA ascolteranno invece un concerto a volume estremamente alto, eseguito da strumenti fuori-tempo, fuori-armonia, per tutta la durata della missione spaziale. Nondimeno, l’orchestra sarà composta da milioni di archi, legni, ottoni e percussioni». Conclude Buscicchio: «Il mio lavoro all’Università di Milano-Bicocca è di riscrivere le partiture del concerto, a partire da una singola registrazione in alta-fedeltà, estraendo più strumenti possibile, anche quelli di cui ancora non conosciamo l’esistenza».

«Ora che LISA viene “adottata” da ESA, la sua realizzazione richiede un grande contributo di tutta la comunità scientifica internazionale»,

aggiunge Alberto Sesana, astrofisico, professore del dipartimento che lavora al progetto.

«In Italia questo sforzo si va concretizzando sempre più, con una lunga collaborazione tra l’Università di Milano-Bicocca e altri atenei italiani».

Selezionata come missione di bandiera del programma ESA Cosmic Vision 2015-2025, LISA sarà parte della flotta di “osservatori cosmici” dell’ESA per rispondere a due profonde domande: quali sono le leggi fondamentali della fisica che descrivono l’Universo? Come si è formato l’Universo e di che cosa è composto? In questa avventura, LISA lavorerà in congiunzione con NewAthena, un’altra missione ESA al momento in fase di studio. NewAthena sarà il più grande osservatorio di raggi X mai costruito nello spazio e il suo lancio è previsto per il 2037.

ESA guida la missione LISA e fornirà satelliti, lanciatori, supporto alla missione e alla raccolta dati. I laser ultra-stabili, i telescopi da 30 cm di diametro per raccogliere la luce laser, e le sorgenti di luce ultravioletta per neutralizzare la carica elettrostatica sulle masse test, saranno forniti dalla NASA. Gli altri componenti chiave saranno: le masse di test schermate da forze esterne, fornite da ASI Italia con contributo da parte della Svizzera; il sistema di misura del segnale interferometrico, con accuratezza picometrica fornito da Germania, Regno Unito, Francia, Olanda, Belgio, Polonia e Repubblica Ceca; il Science Diagnostics Subsystem (un arsenale di sensori a bordo dei satelliti) fornito dalla Spagna.

Illustrazione della Missione LISA. Crediti per l'immagine: Riccardo Buscicchio
Illustrazione della Missione LISA. Crediti per l’immagine: Riccardo Buscicchio

 

Testo e immagine dall’Ufficio Stampa dell’Università di Milano-Bicocca

IL LAMPO GAMMA COSÌ POTENTE DA PERTURBARE L’ALTA IONOSFERA

Rivelata per la prima volta una forte perturbazione della parte più alta della ionosfera terrestre generata da un lampo di raggi gamma, grazie ai dati del satellite INTEGRAL dell’Agenzia Spaziale Europea e del sino-italiano CSES-01. I risultati dello studio, guidato da ricercatori dell’Istituto Nazionale di Astrofisica in collaborazione con l’Istituto Nazionale di Fisica Nucleare, l’Agenzia Spaziale Italiana e diverse università italiane, sono pubblicati su Nature Communications.

Illustrazione del lampo di raggi gamma che ha colpito la Terra il 9 ottobre 2022, è stato rivelato dal satellite ESA INTEGRAL e ha prodotto una forte perturbazione della parte più alta della ionosfera terrestre, registrata dal satellite CSES (CNSA-ASI). Crediti: ESA/ATG Europe; CC BY-SA 3.0 IGO
Illustrazione del lampo di raggi gamma che ha colpito la Terra il 9 ottobre 2022, è stato rivelato dal satellite ESA INTEGRAL e ha prodotto una forte perturbazione della parte più alta della ionosfera terrestre, registrata dal satellite CSES (CNSA-ASI). Crediti: ESA/ATG Europe; CC BY-SA 3.0 IGO

Il 9 ottobre 2022, 15:21 ora italiana, molti satelliti in orbita attorno alla Terra e nello spazio interplanetario hanno registrato il più forte lampo di raggi gamma (in inglese gamma-ray burst, o GRB) mai osservato. Tra questi, anche il satellite INTEGRAL (INTErnational Gamma-Ray Astrophysics Laboratory) dell’Agenzia Spaziale Europea (ESA) ha rivelato un flusso di raggi gamma estremamente intenso e di lunga durata. Contemporaneamente, il satellite CSES-01 (China Seismo-Electromagnetic Satellite), una collaborazione tra l’Agenzia Spaziale Italiana (ASI) e quella cinese (CNSA), ha registrato una perturbazione macroscopica del campo elettrico nella parte superiore della ionosfera, lo strato più alto e tenue dell’atmosfera terrestre, dovuta a un’improvvisa, forte corrente. Un effetto del genere non era mai stato osservato in questo strato dell’atmosfera.

Simili perturbazioni nella ionosfera sono solitamente associate a eventi energetici legati all’attività del Sole, ma in questo caso la coincidenza con l’arrivo del lampo gamma indica che l’origine è da ricercarsi molto più lontano, nell’esplosione di una stella a quasi due miliardi di anni luce di distanza. I risultati dell’analisi, condotta da un team multidisciplinare a guida italiana che è riuscito a sintetizzare dati da due discipline molto diverse – l’astronomia a raggi gamma e la ricerca delle interazioni tra Sole, Terra e cosmo – sono pubblicati su Nature Communications.

“Siamo stati fortunati perché, al momento dell’arrivo del lampo, il satellite CSES si trovava dalla parte del pianeta colpita dall’enorme flusso di raggi gamma” dice Mirko Piersanti, ricercatore dell’Università dell’Aquila e associato all’Istituto Nazionale di Astrofisica (INAF), primo autore dell’articolo, che ha lavorato alla ricerca insieme a Pietro Ubertini dell’INAF, principal investigator dello strumento IBIS a bordo di INTEGRAL. “È stato eccitante scoprire l’effetto registrato a bordo di CSES pochi istanti dopo l’arrivo del GRB registrato da INTEGRAL. Era la prova che la ionosfera terrestre era stata ionizzata in modo così intenso da raggi gamma di alta energia, da generare una variazione della conducibilità tale da produrre variazioni del campo elettrico ionosferico.”

Il lampo gamma del 9 ottobre 2022 è stato il più luminoso mai rivelato sinora: il secondo in ordine di intensità è dieci volte meno luminoso. Lo studio indica come eventi cosmici dovuti a raggi gamma di estrema intensità possano avere una forte influenza nell’equilibrio della composizione della ionosfera. Il lampo gamma, generato in una galassia lontana, una volta arrivato sulla Terra aveva ancora abbastanza energia da perturbare la nostra atmosfera in modo molto marcato, “spostando” sostanzialmente la ionosfera verso il basso per tutta la sua durata. Un effetto simile si registra durante brillamenti solari di forte intensità che provocano veri e propri black-out radio.

“È sorprendente come fenomeni che avvengono nello spazio profondo riescano a produrre conseguenze così significative sul nostro pianeta”, nota Piergiorgio Picozza dell’Istituto Nazionale di Fisica Nucleare (INFN), responsabile della collaborazione CSES-Limadou.

Statisticamente, un lampo di raggi gamma così intenso colpisce la Terra ogni diecimila anni. Se fosse stato generato da un’esplosione simile nella nostra galassia, anziché – come in questo caso – in una galassia a quasi due miliardi di anni luce, avrebbe potuto avere conseguenze molto serie per il nostro pianeta, mettendo in pericolo la sopravvivenza della biosfera terrestre. Il dibattito scientifico sulle possibili conseguenze di un ipotetico GRB proveniente dalla Via Lattea, potenzialmente miliardi di volte più intenso di questo, prevede, nel peggiore dei casi, un’alterazione dello strato di ozono atmosferico che protegge la biosfera dalle radiazioni ultraviolette prodotte dal Sole. È stata anche avanzata l’ipotesi che un simile effetto possa aver causato alcune delle estinzioni di massa avvenute in passato sulla Terra.

L’interazione del GRB con la ionosfera è durata più di 800 secondi (quasi un quarto d’ora) ed è stata così intensa da attivare i rivelatori di fulmini in India. In Germania, strumenti a terra hanno registrato per ore disturbi della trasmissione radio ionosferica. Conoscendo bene gli effetti che lampi di luce solare provocano nella ionosfera, i ricercatori italiani della collaborazione CSES hanno subito capito che un GRB straordinariamente intenso come quello del 9 ottobre 2022 poteva avere avuto un impatto profondo sulla parte alta dell’atmosfera. In passato, tuttavia, solo alcuni GRB erano stati in grado di generare variazioni significative sulla ionosfera, ma solo a basse quote e di notte, quando il contributo legato all’illuminazione solare non è presente. Non era mai stato osservato l’effetto di un GRB all’altezza dell’alta atmosfera dove orbita CSES-01.

“Questo risultato avvalora la scelta dell’ASI di sostenere fin dal 2016 un team multidisciplinare per l’analisi dei dati CSES, che include astrofisici, geofisici, fisici delle particelle, fisici dell’atmosfera ed esperti di space weather”, racconta Simona Zoffoli dell’Unità Osservazione della Terra dell’Agenzia Spaziale Italiana. “La contaminazione tra diverse competenze è preziosa e ha permesso di utilizzare i dati di CSES per obiettivi nuovi inizialmente non previsti”.

La ionosfera, tra 50 e 950 km di altitudine, è uno strato fondamentale per la propagazione delle onde radio, senza la quale non si potrebbero effettuare trasmissioni radio di bassa frequenza attorno al pianeta. La sua densità è però così bassa che i satelliti riescono a orbitare al suo interno. Uno di questi satelliti è proprio CSES-01, che monitora l’alta ionosfera (oltre 350 km di altitudine) e la magnetosfera per rivelare perturbazioni collegabili a fenomeni naturali sia di origine terrestre, come terremoti, tsunami o eruzioni vulcaniche, sia di origine esterna come le perturbazioni dovute a tempeste solari.

Tra gli strumenti a bordo del satellite CSES-01, un rivelatore di particelle (High Energetic Particle Detector) è stato realizzato in collaborazione tra ASI e INFN, e un rivelatore di campo elettrico (Electric Field Detector) è stato sviluppato in collaborazione tra ASI, INAF e INFN. Completano l’equipaggiamento scientifico una serie di rivelatori, tra cui quelli di campo magnetico e delle proprietà del plasma, realizzati da ricercatori cinesi. I dati di tutti gli strumenti sono archiviati e messi a disposizione della comunità scientifica presso il centro ASI SSDC. È stata proprio la straordinaria sensibilità dello strumento di campo elettrico che ha permesso di osservare per la prima volta questo effetto. Dopo questa scoperta, il team della collaborazione CSES ha iniziato ad analizzare sistematicamente tutti i dati del rivelatore di campo elettrico registrati in coincidenza con i GRB a partire dal lancio del satellite, nel 2018.

Per ulteriori informazioni:

L’articolo “First Evidence of Earth’s top-side ionospheric electric field variation triggered by impulsive cosmic photons”, di Mirko Piersanti, Pietro Ubertini, Roberto Battiston, Angela Bazzano, Giulia D’Angelo, James G. Rodi, Piero Diego, Roberto Ammendola, Davide Badoni, Simona Bartocci, Stefania Beolè, Igor Bertello, William J. Burger, Donatella Campana, Antonio Cicone, Piero Cipollone, Silvia Coli, Livio Conti, Andrea Contin, Marco Cristoforetti, Fabrizio De Angelis, Cinzia De Donato, Cristian De Santis, Andrea Di Luca, Emiliano Fiorenza, Francesco M. Follega, Giuseppe Gebbia, Roberto Iuppa, Alessandro Lega, Marco Lolli, Bruno Martino, Matteo Martucci, Giuseppe Masciantonio, Matteo Mergè, Marco Mese, Alfredo Morbidini, Coralie Neubüser, Francesco Nozzoli, Fabrizio Nuccilli, Alberto Oliva, Giuseppe Osteria, Francesco Palma, Federico Palmonari, Beatrice Panico, Emanuele Papini, Alexandra Parmentier, Stefania Perciballi, Francesco Perfetto, Alessio Perinelli, Piergiorgio Picozza, Michele Pozzato, Gianmaria Rebustini, Dario Recchiuti, Ester Ricci, Marco Ricci, Sergio B. Ricciarini, Andrea Russi, Zuleika Sahnoun, Umberto Savino, Valentina Scotti, Alessandro Sotgiu, Roberta Sparvoli, Silvia Tofani, Nello Vertolli, Veronica Vilona, Vincenzo Vitale, Ugo Zannoni, Simona Zoffoli, e Paolo Zuccon, è stato pubblicato online sulla rivista Nature Communications.

Testo e immagine dagli Uffici Stampa INAF, ASI, INFN

PROGETTO GLAMS: BASI LUNARI COSTRUITE CON LA MATERIA PRIMA DEL SATELLITE TERRESTRE

Finanziato da ASI – Agenzia Spaziale Italiana – il progetto di ricerca dell’Università di Padova coordinato da Luca Valentini del Dipartimento di Geoscienze in cui si utilizzerà la tecnologia di stampa 3D per realizzare leganti cementizi a partire da sedimenti, polvere e frammenti di materiale lunari che si trovano in loco.

GLAMS (Geopolimeri per Additive Manufacturing e Monitoraggio Lunare) è il nome del progetto biennale dell’Università di Padova finanziato con oltre 400.000 euro dall’Agenzia Spaziale Italiana ed è risultato vincitore del bando “Giornate della ricerca accademica spaziale”, classificandosi al primo posto nell’area tematica “Materiali Avanzati”.

Si pone la finalità di realizzare elementi strutturali per la costruzione di basi lunari, mediante un approccio di stampa 3D che utilizza leganti cementizi formulati a partire da suoli lunari (regoliti), secondo il principio dello sfruttamento di materie prime disponibili in loco. Tale principio consentirà di minimizzare i costi e l’impatto ambientale dovuti al trasporto di materie prime dal pianeta Terra alla Luna.

GLAMS – coordinato dal Centro di Ateneo di Studi e Attività Spaziali “Giuseppe Colombo” (CISAS) – in partnership con l’Istituto di Chimica della Materia Condensata e di Tecnologie per l’Energia del CNR (ICMATE) con sede a Genova e WASP, azienda italiana leader nel settore della stampa 3D – vede come responsabile scientifico il professor Luca Valentini del Dipartimento di Geoscienze, mentre il professor Carlo Bettanini e la dottoressa  Giorgia Franchin del Dipartimento di Ingegneria Industriale sono i leader di specifici work package.

Il team di ricerca intende ottimizzare il “cemento lunare” formulato a partire dalla regolite, tenendo conto delle specificità delle condizioni ambientali del satellite, tra cui le elevate escursioni termiche, le condizioni di ridotta gravità e pressione atmosferica e l’impatto di micro-meteoriti.

A tal fine, gli elementi strutturati verranno realizzati mediante un processo produttivo che consentirà di realizzare materiali con struttura macro-porosa, capace di conferire eccellenti proprietà di isolamento termico, con la finalità di mitigare il degrado dovuto ai cicli gelo-disgelo causato dalle estreme variazioni di temperatura. Inoltre, all’interno delle unità strutturali verranno integrati opportuni sensori per il monitoraggio di impatti micro-meteoritici.

Progetto GLAMS basi lunari Esempio di struttura porosa - analisi 3D mediante microtomografia a raggi X - di un campione di cemento
Esempio di struttura porosa – analisi 3D mediante microtomografia a raggi X – di un campione di cemento

Il progetto GLAMS

Nella prima fase del progetto, l’unità di ricerca dell’Università di Padova, sotto la guida di Luca Valentini e Giorgia Franchin, formulerà i “leganti geopolimerici” ottenuti dall’attivazione chimica della regolite lunare: questo tipo di legante non prevede l’utilizzo del classico cemento Portland, comunemente utilizzato per la costruzione in ambiente terrestre. Infatti, rispetto a quest’ultimo, sono caratterizzati da emissioni di CO2 significativamente ridotte, inoltre le proprietà allo stato fresco di questi leganti verranno opportunamente ottimizzate per consentire una corretta estrusione mediante stampa 3D.

Nelle fasi successive, l’Istituto di Chimica della Materia Condensata e di Tecnologie per l’Energia del CNR con sede a Genova provvederà a selezionare opportuni agenti schiumogeni che consentiranno di conferire una struttura macro-porosa al legante geopolimerico indurito.

Progetto GLAMS basi lunari Stampa 3D per estrusione di miscela geopolimerica
Stampa 3D per estrusione di miscela geopolimerica

Successivamente i partner di WASP si occuperanno di implementare le formulazioni ottimizzate durante le fasi precedenti del progetto, alla realizzazione di un prototipo di elemento strutturale, con struttura macro-porosa, a media scala, mediante stampa 3D.

Infine, il gruppo coordinato da Carlo Bettanini provvederà alla sensorizzazione degli elementi strutturali, integrando opportune reti di sensori, finalizzate al monitoraggio continuo degli impatti micro-meteoritici.

L’auspicio è che i risultati del progetto GLAMS possano contribuire a soddisfare le esigenze delle agenzie spaziali che prevedono, entro il prossimo decennio, di realizzare missioni spaziali finalizzate a costruire habitat lunari che possano ospitare insediamenti umani semi-permanenti.

Luca Valentini
Luca Valentini

Testo e foto dall’Ufficio Stampa dell’Università di Padova sul Progetto GLAMS per la costruzione di basi lunari con materia prima dal satellite.

Intitolato un cratere di Marte a Giovanni Picardi

Il riconoscimento è stato attribuito dall’Unione Astronomica Internazionale al professore della Sapienza, punto di riferimento nel mondo delle applicazioni spaziali di tecnologie radar, scomparso nel 2015.

Lo IAU Working Group per la nomenclatura del sistema planetario ha assegnato il nome di Giovanni Picardi a un ampio cratere di Marte.

“Un riconoscimento per il contributo che il nostro docente ha dato allo studio e alla conoscenza del Pianeta rosso – ha dichiarato la rettrice Antonella Polimeni – e per i nostri ricercatori e le nostre ricercatrici che quotidianamente lavorano per rendere lo spazio meno lontano e sconosciuto”.

Giovanni Picardi è stato punto di riferimento per tutti i radar dell’Agenzia spaziale italiana, a partire dal programma X-SAR sviluppato in collaborazione con l’Agenzia spaziale tedesca e presente in tre voli dello Space Shuttle. Ma ha avuto un ruolo fondamentale anche per i radar presenti in diverse missioni interplanetarie, da Mars Express – di cui è stato responsabile scientifico del radar MARSIS – a Mars Reconnaissance Orbiter fino a Cassini.

Il lavoro scientifico di Picardi, ampiamente riconosciuto a livello internazionale in particolare presso il Jet Propulsion Laboratory della NASA, ha prodotto innovativi concetti di sistema in grado di svelare gli aspetti più nascosti di mondi quali Marte e Titano; nonché di contribuire  a realizzare l’avanzato e innovativo sistema italiano COSMO-SkyMed per l’osservazione della Terra con tecniche radar.

Il contributo del docente della Sapienza è stato fondamentale anche nell’ambito della formazione e della didattica. Come fondatore e primo direttore del Dipartimento di Scienza e tecnica dell’informazione e della comunicazione, poi confluito nel Dipartimento di ingegneria dell’informazione, elettronica e telecomunicazioni, Picardi è stato un “maestro” per almeno tre generazioni accademiche di studenti e ricercatori nel settore delle telecomunicazioni e creatore di un nuovo dottorato interdisciplinare in Telerilevamento.

Marte Curiosity cratere
Immagine da Curiosity. Foto NASA/JPL-Caltech/MSSS in pubblico dominio

Testo dal Settore Ufficio stampa e comunicazione Sapienza Università di Roma

GRB220101A, IL GRB PIÙ BRILLANTE IN OTTICO RILEVATO FINORA: UN CASO ESTREMO

Un team di ricerca a cui partecipa anche l’Istituto Nazionale di Astrofisica (INAF) è riuscito a osservare le primissime fasi di un lampo di raggi gamma (GRB, dall’inglese gamma-ray burst) risultato essere il più luminoso nelle bande ottiche rilevato finora. I GRB sono fenomeni transienti esplosivi al centro di continue rivoluzioni scientifiche e INAF è impegnato sia sul piano osservativo-interpretativo che con la partecipazione a grandi missioni dallo spazio per rilevarli e studiarli. I lampi di raggi gamma sono eventi tra i più violenti dell’universo, a distanza di miliardi di anni luce da noi. La loro energia viene trasferita in potentissimi getti collimati che emettono la radiazione che osserviamo. Nello specifico, i ricercatori hanno studiato GRB220101A, il cui segnale – come dice la sigla – è stato rilevato per la prima volta nel capodanno del 2022.

Gli esperti, guidati dal Purple Mountain Observatory (Cina), hanno utilizzato un nuovo metodo sviluppato per ricavare una fotometria affidabile da fonti “catturati” dall’Ultraviolet and Optical Telescope (UVOT), uno dei tre strumenti a bordo del Neil Gehrels Swift Observatory, osservatorio spaziale della NASA con una importante partecipazione italiana dell’ASI e dell’INAF.

Stefano Covino, ricercatore presso l’INAF di Milano e unico italiano tra gli autori dello studio, spiega che

“questa scoperta rivela le diverse origini dei brillamenti ultravioletti/ottici estremamente energetici e dimostra la necessità dell’osservazione ad alta risoluzione temporale nei primi istanti di evoluzione del fenomeno”. E aggiunge: “Ogni evento GRB mostra dei comportamenti originali, ma in generale troviamo che anche i casi più estremi rientrano comunque nella stessa fenomenologia. GRB220101A non fa eccezione. Non si tratta quindi di una nuova categoria di GRB ma plausibilmente di un caso estremo fra quelli già noti”.

Perché allora è un caso “monstre”? Covino osserva che

“il motivo è probabilmente duplice. Da una parte semplicemente accumulando più osservazioni si possono identificare casi più rari che normalmente ci sarebbe bassa probabilità di poter osservare. E in aggiunta c’è una questione tecnica che consiste nell’avere definito una procedura per poter ottenere informazioni affidabili dalle osservazioni da satellite anche quando, come in questo caso, i dati sono, come si dice tecnicamente, saturi. Questo ci ha permesso di poter avere informazioni nella primissima fase di questo evento e quindi identificare l’impressionante picco in luminosità di cui parliamo”.

GRB220101A è stato osservato da Swift, ma anche da altri telescopi spaziali come Fermi e Agile.

“Come sempre quando Swift identifica un GRB si ripuntano gli strumenti di bordo, come UVOT, e si ottengono dati pochi secondi dall’identificazione dell’evento di alte energie (il GRB vero e proprio). Un ottimo risultato per uno strumento che ormai vola dal 2004! Non appena l’alert per l’identificazione è arrivato a terra anche i telescopi “ground-based” hanno cominciato ad osservare ed il telescopio cinese di Xinglong, da 2,2 metri, ha ottenuto la misura di distanza, tramite uno spettro, che è risultata essere il notevole valore di z=4,6. All’epoca dell’evento che ha generato questo GRB l’universo aveva poco più di un miliardo d’anni”, dice Covino.

Il ricercatore sottolinea il grande lavoro tecnico fatto su questo GRB:

“Dobbiamo prima di tutto immaginare che un telescopio ottico, qualunque, riceve la radiazione luminosa da un oggetto celeste e la converte in un’immagine sul suo rivelatore. Ora, quello che accade è che, in dipendenza dalle caratteristiche del telescopio, l’immagine che si crea per un oggetto puntiforme, come le stelle o anche un GRB a distanze cosmologiche, ha una forma matematica ben precisa (tecnicamente è la PSF). Per visualizzarla possiamo immaginare un cappello a punta, tipo quello dei maghi, con la punta in alto e delle larghe falde intorno. Fare “fotometria” significa misurare bene l’estensione e l’altezza di questo ipotetico cappello! In pratica però, per eventi così brillanti, la parte centrale del “cappello” è cancellata, come tagliata, e quindi non è possibile ottenere le informazioni necessarie. Tuttavia esistono delle relazioni ben precise fra l’altezza del “cappello” e le faglie, che dipendono per telescopi nello spazio (cioè senza l’effetto dell’atmosfera) solo dalle caratteristiche tecniche del telescopio stesso. Con un lavoro davvero certosino siamo riusciti a misurare i parametri di queste relazioni e quindi a ricostruire a posteriori la forma del “cappello” in modo da ottenere le informazioni fotometriche complete. Anche questo può essere un esempio di come, anche con uno strumento che vola dal 2004, non si smetta mai di migliorare”.

Nonostante i decenni di studio, i GRB continuano a mostrare sorprese. Covino conclude dicendo:

“sembra quasi che siano un serbatoio inesauribile di comportamenti estremi ed ovviamente grandemente interessanti. Dal punto vista più modellistico ci mostrano come determinate combinazioni di parametri che portano alla prodigiosa luminosità in ottico osservata sono realmente possibili nel mondo reale. Questo ha importanti conseguenze ad esempio nel valutare l’impatto dei GRB nell’ambiente delle galassie che li ospitano”.

Uno dei co-autori del paper, Hao Zhou, e il primo autore, Zhi-Ping Jin, del Purple Mountain Observatory, hanno un forte legame con l’Italia. Jin è stato postdoc a Merate proprio con Covino, mentre Zhou, un giovane alla fine del suo dottorato, è attualmente in visita nella sede INAF di Merate dove lavora con Covino.


Rappresentazione artistica di un lampo di raggi gamma GRB220101A
Immagine artistica di un Gamma Ray Burst e dei suoi due getti che si propagano in direzioni opposte. Quando vediamo il Grb è grazie al fatto che il getto, che ha un angolo di apertura di pochi gradi, punta in direzione della terra. La bolla di luce che si vede al centro è la stella di grande massa che sta scoppiando, al cui centro si è appena formato il buco nero da cui hanno origine i due getti. Crediti: Eso/A. Roquette

 

Per ulteriori informazioni:

L’articolo “An optical/ultraviolet flare with absolute AB magnitude of -39.4 detected in GRB 220101A”, di Zhi-Ping Jin, Hao Zhou, Yun Wang, Jin-Jun Geng, Stefano Covino, Xue-Feng Wu, Xiang Li, Yi-Zhong Fan, Da-Ming Wei e Jian-Yan Wei è stato pubblicato su pubblicato sulla rivista Nature Astronomy.

Testo e immagini dall’Ufficio stampa – Struttura per la Comunicazione Istituto Nazionale di Astrofisica (INAF)

LO SPETTROMETRO A IMMAGINE MAJIS DELLA SONDA JUICE HA COMPLETATO I TEST IN VOLO

MAJIS test in volo
Lo strumento MAJIS a bordo della sonda JUICE che ha completato i test in volo. Crediti: Leonardo

Fra gli strumenti di telerilevamento a bordo della sonda dell’Agenzia Spaziale Europea (ESA) JUICE (Jupiter Icy Moon Explorer), lo spettrometro a immagine MAJIS (Moons and Jupiter Imaging Spectrometer), operante nel visibile e vicino infrarosso (0.5-5.5 μm), assume un particolare rilievo per la sua capacità di fornire misure importanti per l’intera gamma di indagini che riguardano il pianeta Giove e i suoi maggiori satelliti. MAJIS come anche JANUS, RIME e 3GM tutti realizzati con il finanziamento dell’Agenzia Spaziale Italiana (ASI) sono stati precedentemente accesi e testati nello spazio con successo dimostrando il perfetto funzionamento di tutti gli strumenti realizzati, interamente o in parte, dal nostro Paese.

Giuseppe Piccioni, Co-Principal Investigator dello strumento MAJIS per l’INAF di Roma, spiega: “La scorsa settimana, lo specchio di scansione e l’otturatore sono stati attivati e azionati in modo impeccabile. Sono state poi eseguite osservazioni delle sue lampade di calibrazione interne, confermando le eccellenti prestazioni dello strumento in linea con la calibrazione a terra. MAJIS è quindi pronto per compiere la sua missione, ovvero studiare la composizione della superficie e l’esosfera delle lune ghiacciate e caratterizzare la composizione e la dinamica dell’atmosfera di Giove”.

La figura confronta due immagini MAJIS acquisite durante la calibrazione dello strumento (in alto) e la messa in servizio in volo (in basso) utilizzando la lampada di calibrazione interna. Da queste immagini vengono estratti due profili che mostrano che il segnale preso in volo (verde) è simile a quello acquisito durante la calibrazione in condizioni criogeniche simili. Crediti: INAF

Tra gli obiettivi di MAJIS rivestono la massima importanza la determinazione e mappatura della composizione superficiale delle lune Ganimede, Callisto ed Europa, con particolare enfasi sui composti diversi dal ghiaccio d’acqua già noti da precedenti osservazioni o previsti dai modelli, come sali minerali idrati, volatili e composti organici, e la mappatura composizionale dell’atmosfera di Giove, inclusa la densità delle nubi e la morfologia delle aurore. In questo contesto, il progetto MAJIS si propone di valorizzare e sviluppare ulteriormente le competenze maturate durante il progetto Jovian InfraRed Auroral Mapper (JIRAM) attualmente operante attorno a Giove a bordo della missione NASA Juno.

“Il completamento dei primi test in volo dello strumento MAJIS – dichiara Raffaele Mugnuolo, responsabile di Unità di Esplorazioni, Infrastrutture Orbitanti e di Superficie e Satelliti Scientifici di ASI – è un passo importantissimo e che instilla grande ottimismo per il prosieguo della missione JUICE. Lo spettrometro MAJIS conferma la grande e consolidata capacità italiana in questo ambito, sia per la parte ingegneristica che per la parte scientifica. Il coordinamento esercitato dall’ASI si è rivelato efficace sia nei rapporti con il CNES che verso ESA e ha consentito il completamento di uno strumento complicatissimo che ripagherà in termini di ritorno scientifico senza precedenti”.

MAJIS è stato costruito da un consorzio franco-italiano guidato dall’Institut d’Astrophysique Spatiale (IAS) di Orsay, in Francia, e finanziato dal Centre National d’études Spatiales (CNES) e dall’Agenzia spaziale italiana (ASI). L’Istituto Nazionale di Astrofisica (INAF) ha coordinato la proposta originale dello strumento, selezionata da ESA a febbraio 2013, e in qualità di Istituto Co-PI ha poi seguito lo sviluppo del sostanziale contributo hardware italiano che riguarda la testa ottica costituita da telescopio e spettrometro, realizzati presso Leonardo (Campi Bisenzio, Firenze), e la valutazione delle performance attese. Lo strumento è stato assemblato e calibrato inizialmente presso Leonardo, poi presso IAS-Orsay. Infine è stato alloggiato a bordo del satellite JUICE a dicembre 2021. I laboratori belgi supportati da Belspo sono stati coinvolti nella caratterizzazione dei rivelatori MAJIS.

Testo e immagini dall’Ufficio stampa – Struttura per la Comunicazione Istituto Nazionale di Astrofisica (INAF).

APRE GLI OCCHI LA CAMERA JANUS (Jovis, Amorum ac Natorum Undique Scrutator) DELLA SONDA ESA JUICE (Jupiter Icy Moon Explorer )

Conclusa positivamente la cosiddetta fase di commissioning – cioè di collaudo – dello strumento ottico realizzato da Leonardo sotto la responsabilità dell’ASI e con il contributo e la guida scientifica dell’Università Parthenope di Napoli e dell’INAF.

camera JANUS
Foto della camera JANUS prima di essere stata installata a bordo della sonda JUICE. Crediti: Leonardo, DLR, IAA

Lo strumento Jovis, Amorum ac Natorum Undique Scrutator (JANUS) ha superato a pieni voti la fase di commissioning, vale a dire un vero e proprio collaudo durante il quale – a 8 milioni di km dalla Terra – ha aperto i suoi “occhi” elettronici inviando ai tecnici e ai ricercatori la cosiddetta “prima luce”, cioè la sua prima serie di immagini. La camera ottica, che viaggia ormai da poco più di un mese a bordo della sonda ESA Jupiter Icy Moon Explorer (JUICE), è stata progettata per studiare la morfologia ed i processi globali regionali e locali delle lune ghiacciate di Giove e per eseguire la mappatura delle nubi del gigante gassoso. Lo strumento è stato realizzato da Leonardo sotto la responsabilità dell’Agenzia Spaziale Italiana (ASI) e con il contributo e la guida scientifica dell’Università Parthenope di Napoli e dell’Istituto Nazionale di Astrofisica (INAF).

La scorsa settimana, la camera JANUS è stata messa in funzione e comandata quasi in tempo reale dall’European Space Operation Center (ESOC) a Darmstadt, per verificare tutte le sue funzionalità hardware e software. Lo strumento italiano è equipaggiato con un sistema di 13 filtri (5 a banda larga e 8 a banda stretta) distribuiti nell’intervallo spettrale dal visibile al vicino infrarosso (0.34 – 1.08 micron). Il sistema catadiottrico del telescopio definisce un campo di vista rettangolare di 1.29° × 1.72° e permette di raggiungere la risoluzione spaziale di 7 metri nella fase orbitale intorno a Ganimede a 500 km dalla superficie, e di circa 10 km per le immagini dell’atmosfera di Giove. JANUS permetterà dunque l’acquisizione di immagini multispettrali a una risoluzione e con una estensione 50 volte migliore che in passato, garantendo notevoli passi in avanti nella conoscenza di questi mondi esotici. La camera include anche un computer con un software che controlla tutte le funzionalità dello strumento, riceve i comandi e invia telemetria e dati a terra attraverso un’interfaccia satellitare.

“JANUS è stato progettato per rispondere a molte domande scientifiche della missione JUICE”, afferma Pasquale Palumbo (INAF di Roma), Principal Investigator del team che ha progettato, testato e calibrato la fotocamera. “Lo strumento è molto flessibile, possiamo ottimizzare i parametri di acquisizione per i diversi obiettivi, requisiti di osservazione e condizioni che la camera dovrà affrontare”.

JANUS è ottimizzato per lo studio della morfologia globale, regionale e locale della superficie delle lune ghiacciate di Giove e per il monitoraggio dell’atmosfera del pianeta. Con JANUS sarà inoltre possibile studiare gli strati esterni (fino alla troposfera) dell’atmosfera di Giove e approfondire lo studio della magnetosfera in cui Giove e i suoi satelliti sono inseriti e le complesse interazioni che avvengono nel sistema.

Le attività svolte durante la fase di commissioning hanno incluso un controllo completo dell’hardware, con tutti i sottosistemi attivati e monitorati attraverso le relative telemetrie, il comando di diverse impostazioni di configurazione e l’esecuzione di operazioni scientifiche per verificare le condizioni nominali della catena di acquisizione (dal rivelatore all’interfaccia con il veicolo spaziale).

Barbara Negri, Responsabile Unità Volo Umano e Sperimentazione Scientifica dell’ASI, commenta:

“JANUS ha rappresentato una significativa evoluzione tecnologica delle camere ottiche impiegate nelle missioni di esplorazione del sistema solare. La realizzazione di questo strumento è stata molto complessa e sfidante, ma la società Leonardo ha centrato pienamente l’obiettivo, che permetterà di fare notevoli passi avanti nella conoscenza di queste lune, candidate ad ospitare eventuali forme di vita”.

Il comportamento del sistema ottico è stato verificato anche osservando un campo stellare attorno a eta Cyg, una stella binaria visibile nella costellazione del Cigno a circa 135 anni luce dal Sistema solare. La serie di “scatti” fotografici ha confermato il buono stato dell’allineamento ottico critico di JANUS e l’integrità degli elementi ottici.

“Un rapido sguardo ai dati acquisiti suggerisce che quasi tutto era nominale. Dopo questa intensa sessione sul campo, possiamo dire: abbiamo uno strumento (completamente commissionato)!”, conclude Palumbo.


Per ulteriori informazioni:

Leonardo è responsabile industriale per la realizzazione, integrazione e test dello strumento JANUS, con il contributo di sottosistemi dal DLR di Berlino, CSIC-IAA di Granada e CEI-Open University di Milton Keynes. Le Agenzie Spaziali Italiana, Tedesca, Inglese (ASI, DLR e UKSA), con il Ministero della Ricerca Spagnolo, sono i principali finanziatori del progetto. JANUS è stata sviluppata da un team internazionale composto da Istituti e ricercatori situati in Italia, Germania, Spagna, Gran Bretagna, Francia, USA, Giappone e Israele. Il team è guidato dall’INAF-IAPS e include partecipanti anche da altri Istituti INAF (gli Osservatori di Padova, Roma e Catania), dal CISAS-Università di Padova e da altri istituti di ricerca e università.

Testo, video e immagini dall’Ufficio stampa – Struttura per la Comunicazione Istituto Nazionale di Astrofisica (INAF).