Ad
Ad
Ad
Tag

planets

Browsing

Webb reveals new details in Jupiter’s aurora

The NASA/ESA/CSA James Webb Space Telescope has captured new details of the auroras on our Solar System’s largest planet. The dancing lights observed on Jupiter are hundreds of times brighter than those seen on Earth. With Webb’s advanced sensitivity, astronomers have studied the phenomena to better understand Jupiter’s magnetosphere.

Three panels, each showing a close-up near-infrared image of Jupiter’s north pole, in shades of orange. The planet is mostly dark. Thick, bright arcs and rings caused by aurorae cover the pole. The centre and right panels each show the aurora a few minutes later in time, as Webb’s field of view slowly scans over the planet.
The NASA/ESA/CSA James Webb Space Telescope has captured new details of the auroras on our Solar System’s largest planet. The dancing lights observed on Jupiter are hundreds of times brighter than those seen on Earth.
These observations of Jupiter’s auroras were captured with Webb’s Near-InfraRed Camera (NIRCam) on 25 December 2023 (F335M filter). Scientists found that the emission from the trihydrogen ion, known as H3+, is far more variable than previously believed. H3+ is created by the impact of high energy electrons on molecular hydrogen. Because this emission shines brightly in the infrared, Webb’s instruments are well equipped to observe it.
Credit: ESA/Webb, NASA, CSA, J. Nichols (University of Leicester), M. Zamani (ESA/Webb)

The auroras are created when high-energy particles enter a planet’s atmosphere near its magnetic poles and collide with atoms of gas. Not only are the auroras on Jupiter huge in size, they are also hundreds of times more energetic than auroras on Earth. Here, auroras are caused by solar storms — when charged particles rain down on the upper atmosphere, excite gases and cause them to glow colours of red, green and purple. Meanwhile, Jupiter has an additional source for its auroras; the strong magnetic field of the gas giant grabs charged particles from its surroundings. This includes not only the charged particles within the solar wind but also the particles thrown into space by its orbiting moon Io, known for its numerous and large volcanoes. Io’s volcanoes spew particles that, remarkably, escape the moon’s gravity and orbit Jupiter. A barrage of charged particles unleashed by the sun during solar storms also reaches the planet. Jupiter’s large and powerful magnetic field captures charged particles and accelerates them to tremendous speeds. These speedy particles slam into the planet’s atmosphere at high energies, which excites the gas and causes it to glow.

Now, Webb’s unique capabilities are providing new insights into the auroras on Jupiter. The telescope’s sensitivity allows astronomers to increase the shutter speed in order to capture fast-varying auroral features. New data was captured with Webb’s Near-InfraRed Camera (NIRCam) on Christmas Day 2023 by a team of scientists led by Jonathan Nichols from the University of Leicester in the United Kingdom.

What a Christmas present it was – it just blew me away!” shared Nichols. “We wanted to see how quickly the auroras change, expecting it to fade in and out ponderously, perhaps over a quarter of an hour or so. Instead we observed the whole auroral region fizzing and popping with light, sometimes varying by the second.”

On the right is the planet Jupiter as seen in near-infrared light. Its clouds are dark blue and white in colour, with some red spots within the clouds, while its poles are tinged with green, yellow and red. A box over the north pole is overlain with more data in shades of orange, displaying aurorae as arcs and rings on the planet. To left, this area is shown larger in size and captioned “09:53:57 25 Dec. 2023”.
The NASA/ESA/CSA James Webb Space Telescope has captured new details of the auroras on our Solar System’s largest planet. The dancing lights observed on Jupiter are hundreds of times brighter than those seen on Earth.
These observations of Jupiter’s auroras (shown on the left of the above image) were captured with Webb’s Near-InfraRed Camera (NIRCam) on 25 December 2023 (F335M filter). Scientists found that the emission from the trihydrogen ion, known as H3+, is far more variable than previously believed. H3+ is created by the impact of high energy electrons on molecular hydrogen. Because this emission shines brightly in the infrared, Webb’s instruments are well equipped to observe it. The image on the right shows the planet Jupiter to indicate the location of the observed auroras, which was originally published in 2023 (F164N, F212N, and F360M filters).
Credit: NASA, ESA, CSA, STScI, Ricardo Hueso (UPV), Imke de Pater (UC Berkeley), Thierry Fouchet (Observatory of Paris), Leigh Fletcher (University of Leicester), Michael H. Wong (UC Berkeley), Joseph DePasquale (STScI), J. Nichols (University of Leicester), M. Zamani (ESA/Webb)

The team’s data found that the emission from the trihydrogen ion, known as H3+, is far more variable than previously believed. The observations will help develop scientists’ understanding of how Jupiter’s upper atmosphere is heated and cooled.

The team also uncovered some unexplained observations in their data.

“What made these observations even more special is that we also took pictures simultaneously in the ultraviolet with the NASA/ESA Hubble Space Telescope,” added Nichols. “Bizarrely, the brightest light observed by Webb had no real counterpart in Hubble’s pictures. This has left us scratching our heads. In order to cause the combination of brightness seen by both Webb and Hubble, we need to have an apparently impossible combination of high quantities of very low energy particles hitting the atmosphere – like a tempest of drizzle! We still don’t understand how this happens.” 

The team now plans to study this discrepancy between the Hubble and Webb data and to explore the wider implications for Jupiter’s atmosphere and space environment. They also intend to follow up this research with more Webb observations, which they can compare with data from NASA’s Juno spacecraft to better explore the cause of the enigmatic bright emission. These insights may also support the European Space Agency’s Jupiter Icy Moons Explorer, Juice, which is en route to Jupiter to make detailed observations of the giant gas planet and its three large ocean-bearing moons – Ganymede, Callisto and Europa. Juice will take a look at Jupiter’s auroras with seven unique scientific instruments, including two imagers. These close-up measurements will help us understand how the planet’s magnetic field and atmosphere interact, as well as the effect that charged particles from Io and the other moons have on Jupiter’s atmosphere.

Three panels, each showing a close-up near-infrared image of Jupiter’s north pole, in shades of orange. The planet is mostly dark. Thick, bright arcs and rings caused by aurorae cover the pole. The three panels each show the aurora a few minutes later in time - left to right, they are labelled “08:15:00”, “09:10:00” and “09:55:00”.
The NASA/ESA/CSA James Webb Space Telescope has captured new details of the auroras on our Solar System’s largest planet. The dancing lights observed on Jupiter are hundreds of times brighter than those seen on Earth.
These observations of Jupiter’s auroras were captured with Webb’s Near-InfraRed Camera (NIRCam) on 25 December 2023 (F335M filter). Scientists found that the emission from the trihydrogen ion, known as H3+, is far more variable than previously believed. H3+ is created by the impact of high energy electrons on molecular hydrogen. Because this emission shines brightly in the infrared, Webb’s instruments are well equipped to observe it.
The timestamps indicated in the lower right corner of each image indicates the time (UTC) when these observations were taken on 25 December 2023.
Credit: ESA/Webb, NASA, CSA, J. Nichols(University of Leicester), M. Zamani (ESA/Webb)

These results were obtained from data using Webb’s Cycle 2 observing programme #4566 and Hubble’s observing programme #17471. The results were published today in Nature Communications.

Press release from ESA Webb.

Hubble helps determine Uranus’ rotation rate with unprecedented precision

An international team of astronomers using the NASA/ESA Hubble Space Telescope have made new measurements of Uranus’ interior rotation rate with a novel technique, achieving a level of accuracy 1000 times greater than previous estimates. By analysing more than a decade of Hubble observations of Uranus’ aurorae, researchers have refined the planet’s rotation period and established a crucial new reference point for future planetary research.

This visual shows three panels that each show Uranus and dynamic aurora activity. The images were captured in October 2022 on the 8th, 10, and 24th respectively. Each image shows a centred planet with a strong blue hue and a visible white region. A faint ring is also visible around the planet in each image. Each image shows fuzzy blue/purple regions hovering over the planet in different locations to indicate the aurorae.
This visual showcases 3 images from the NASA/ESA Hubble Space Telescope of the dynamic aurora on Uranus in October 2022. These observations were made by the Space Telescope Imaging Spectrograph (STIS) and includes both visible and ultraviolet data. An international team of astronomers used Hubble to make new measurements of Uranus’ interior rotation rate by analysing more than a decade of the telescope’s observations of Uranus’ aurorae. This refinement of the planet’s rotation period achieved a level of accuracy 1000 times greater than previous estimates and serves as a crucial new reference point for future planetary research. Credit: ESA/Hubble, NASA, L. Lamy, L. Sromovsky

Determining a planet’s interior rotation rate is challenging, particularly for a world like Uranus, where direct measurements are not possible. A team led by Laurent Lamy (of LIRA, Observatoire de Paris-PSL and LAM, Aix-Marseille University, France), developed an innovative method to track the rotational motion of Uranus’ aurorae: spectacular light displays generated in the upper atmosphere by the influx of energetic particles near the planet’s magnetic poles. This technique revealed that Uranus completes a full rotation in 17 hours, 14 minutes, and 52 seconds — 28 seconds longer than the estimate obtained by NASA’s Voyager 2 during its 1986 flyby.

“Our measurement not only provides an essential reference for the planetary science community but also resolves a long-standing issue: previous coordinate systems based on outdated rotation periods quickly became inaccurate, making it impossible to track Uranus’ magnetic poles over time,” explains Lamy. “With this new longitude system, we can now compare auroral observations spanning nearly 40 years and even plan for the upcoming Uranus mission.”

This breakthrough was made possible thanks to Hubble’s long-term monitoring of Uranus. Over more than a decade, Hubble has regularly observed its ultraviolet auroral emissions, enabling researchers to track the position of the magnetic poles with magnetic field models.

“The continuous observations from Hubble were crucial,” says Lamy. “Without this wealth of data, it would have been impossible to detect the periodic signal with the level of accuracy we achieved.”

Unlike the aurorae of Earth, Jupiter, or Saturn, Uranus’ aurorae behave in a unique and unpredictable manner. This is due to the planet’s highly tilted magnetic field, which is significantly offset from its rotational axis. The findings not only help astronomers understand Uranus’ magnetosphere but also provide vital information for future missions.

The Planetary Science Decadal Survey in the US prioritized the Uranus Orbiter and Probe concept for future exploration.

These findings set the stage for further studies that will deepen our understanding of one of the most mysterious planets in the Solar System. With its ability to monitor celestial bodies over decades, the Hubble Space Telescope continues to be an indispensable tool for planetary science, paving the way for the next era of exploration at Uranus.

This Hubble image shows Uranus and dynamic aurora activity on 10 October 2022. The centered planet is dominated by a blue hue and a large white region in the lower left. A faint ring is also visible around the planet. Fuzzy blue/purple regions hovering over the planet on the left and ride indicate the presence of aurorae.
This image of Uranus’ aurorae was taken by the NASA/ESA Hubble Space Telescope on 10 October 2022. These observations were made by the Space Telescope Imaging Spectrograph (STIS) and includes both visible and ultraviolet data. An international team of astronomers used Hubble to make new measurements of Uranus’ interior rotation rate by analysing more than a decade of the telescope’s observations of Uranus’ aurorae. This refinement of the planet’s rotation period achieved a level of accuracy 1000 times greater than previous estimates and serves as a crucial new reference point for future planetary research. Credit: ESA/Hubble, NASA, L. Lamy, L. Sromovsky

These results are based on observations acquired with Hubble programmes GO #12601130121403616313 and DDT #15380 (PI: L. Lamy). The team’s paper has been published today in Nature Astronomy.

Bibliographic information:

Lamy, L., Prangé, R., Berthier, J. et al. A new rotation period and longitude system for Uranus. Nat Astron (2025), DOI: https://doi.org/10.1038/s41550-025-02492-z

 

Press release from ESA Hubble

Webb captures Neptune’s auroras for the first time

For the first time, the NASA/ESA/CSA James Webb Space Telescope has captured bright auroral activity on Neptune. Auroras occur when energetic particles, often originating from the Sun, become trapped in a planet’s magnetic field and eventually strike the upper atmosphere. The energy released during these collisions creates the signature glow.

In the past, astronomers have seen tantalizing hints of auroral activity on Neptune. However, imaging and confirming the auroras on Neptune has long evaded astronomers despite successful detections on Jupiter, Saturn, and Uranus. Neptune was the missing piece of the puzzle when it came to detecting auroras on the giant planets of our Solar System. Now, Webb’s near-infrared sensitivity has observed this phenomenon.

The data was obtained in June 2023 using Webb’s Near-Infrared Spectrograph. In addition to the image of the planet, astronomers obtained a spectrum to characterise the composition and measure the temperature of the planet’s upper atmosphere (the ionosphere). For the first time, they found an extremely prominent emission line [1] signifying the presence of the trihydrogen cation (H3+), which can be created in auroras. In the Webb images of Neptune, the glowing aurora appears as splotches represented in cyan.

The auroral activity seen on Neptune is noticeably different from what we are accustomed to seeing here on Earth, or even Jupiter or Saturn. Instead of being confined to the planet’s northern and southern poles, Neptune’s auroras are located at the planet’s geographic mid-latitudes — think where South America is located on Earth.

This is due to the strange nature of Neptune’s magnetic field, originally discovered by NASA’s Voyager 2 in 1989, which is tilted by 47 degrees from the planet’s rotation axis. Since auroral activity is based where the magnetic fields converge into the planet’s atmosphere, Neptune’s auroras are far from its rotational poles.

The ground-breaking detection of Neptune’s auroras will help us understand how Neptune’s magnetic field interacts with particles that stream out from the Sun to the distant reaches of our solar system, a totally new window in ice giant atmospheric science.

From the Webb observations, the science team also measured the temperature of the top of Neptune’s atmosphere for the first time since Voyager 2’s flyby. The results hint at why Neptune’s auroras remained hidden from astronomers for so long: Neptune’s upper atmosphere has cooled by several hundreds of degrees.

Through the years, astronomers have predicted the intensity of Neptune’s auroras based on the temperature recorded by Voyager 2. A substantially colder temperature would result in much fainter auroras. This cold temperature is likely the reason that Neptune’s auroras have remained undetected for so long. The dramatic cooling also suggests that this region of the atmosphere can change greatly even though the planet sits over 30 times farther from the Sun compared to Earth.

Equipped with these new findings, astronomers now hope to study Neptune with Webb over a full solar cycle, an 11-year period of activity driven by the Sun’s magnetic field. Results could provide insights into the origin of Neptune’s bizarre magnetic field, and even explain why it’s so tilted.

These observations were obtained as part of Guaranteed Time Observations in programme 1249 (PI: L. Fletcher). The team’s results have been published in Nature Astronomy.

Notes

[1] A bright line in a spectrum caused by emission of light. Each chemical element emits and absorbs radiated energy at specific wavelengths. The collection of emission lines in a spectrum corresponds to the chemical elements contained in a celestial object.

A two-panel horizontal image. On the left is Neptune observed by the Hubble Space Telescope. It is a blue circle, tilted about 25 degrees to the left. There are white smudges at 7 o’clock and just above 5 o’clock. At right is an opposing view of the planet, using data from Hubble and Webb. It is a multi-hued blue orb. There are white smudges in the same spots as the image on the left, but also at the center of the planet and at the top. There are cyan smudges vertically along the right side, and the top of these areas are more translucent than the bottom.
At the left, an enhanced-color image of Neptune from the NASA/ESA Hubble Space Telescope. At the right, that image is combined with data from the NASA/ESA/CSA James Webb Space Telescope. The cyan splotches, which represent auroral activity, and white clouds, are data from Webb’s Near-Infrared Spectrograph (NIRSpec), overlaid on top of the full image of the planet from Hubble’s Wide Field Camera 3. Auroras occur when energetic particles, often originating from the Sun, become trapped in a planet’s magnetic field and eventually strike the upper atmosphere. The energy released during these collisions creates the signature glow. Webb’s detection of auroras on Neptune is the first time astronomers have captured direct evidence of this phenomenon on the planet most distant from the Sun. In addition to the visible glow in the imagery, the spectrum from Webb also found an extremely prominent emission line signifying the presence of the trihydrogen cation (H3+), which can be created in auroras.
Neptune’s auroras do not occur at the northern and southern poles of the planet, where we see auroras on planets like Earth and Jupiter, because of the strange nature of Neptune’s magnetic field, which is tilted by 47 degrees from the planet’s rotational axis. Webb’s study of Neptune also revealed that the planet’s upper atmosphere has cooled by several hundred degrees, likely the reason that Neptune’s auroras have remained undetected for so long. This image was created from Hubble and Webb data from proposals: 17187 (R. Windhorst) and 1249 (B. Frye).
Credit: NASA, ESA, CSA, STScI, Heidi Hammel (AURA), Henrik Melin (Northumbria University), Leigh Fletcher (University of Leicester), Stefanie Milam (NASA-GSFC)

Press release from ESA Webb.

By observing NGC 346, Webb finds planet-forming discs lived longer in early Universe: new data refutes current theories of planet formation in Universe’s early days

 

The NASA/ESA/CSA James Webb Space Telescope just solved a conundrum by proving a controversial finding made with the NASA/ESA Hubble Space Telescope more than 20 years ago.

This image features NGC 346, one of the most dynamic star-forming regions in nearby galaxies, as seen by the NASA/ESA/CSA James Webb Space Telescope.
NCG 346 is located in the Small Magellanic Cloud (SMC), a dwarf galaxy close to our Milky Way.
Credit: NASA, ESA, CSA, STScI, A. Pagan (STScI)

In 2003, Hubble provided evidence of a massive planet around a very old star, almost as old as the Universe. Such stars possess only small amounts of heavier elements that are the building blocks of planets. This implied that some planet formation happened when our Universe was very young, and those planets had time to form and grow big inside their primordial discs, even bigger than Jupiter. But how? This was puzzling.

A side-by-side comparison of a Hubble image of the massive star cluster NGC 346 (left) versus a Webb image of the same cluster (right). The Hubble image shows the cluster in shades of blue against a black background punctuated by white stars of various sizes. Ethereal nebulosity, looking much like draped chiffon, dominates the image. The Webb view, in shades of pink and orange against a black background, is speckled with fewer stars than in the Hubble version. These stars are white and pink. Webb pierces through the cluster’s clouds to reveal more of its structure, which looks like twisted fibers.
This side-by-side comparison shows a Hubble image of the massive star cluster NGC 346 (left) versus a Webb image of the same cluster (right). While the Hubble image shows more nebulosity, the Webb image pierces through those clouds to reveal more of the cluster’s structure. NGC 346 has a relative lack of elements heavier than helium and hydrogen, making it a good proxy for stellar environments in the early, distant universe.
Credit: NASA, ESA, CSA, STScI, O. C. Jones (UK ATC), G. De Marchi (ESTEC), M. Meixner (USRA), A. Nota (ESA)

To answer this question, researchers used Webb to study stars in a nearby galaxy that, much like the early Universe, lacks large amounts of heavy elements. They found that not only do some stars there have planet-forming discs, but that those discs are longer-lived than those seen around young stars in our Milky Way galaxy.

“With Webb, we have a really strong confirmation of what we saw with Hubble, and we must rethink how we model planet formation and early evolution in the young Universe,” said study leader Guido De Marchi of ESA’s European Space Research and Technology Centre in Noordwijk, Netherlands.

A different environment in early times

In the early Universe, stars formed from mostly hydrogen and helium, and very few heavier elements such as carbon and iron, which came later through supernova explosions.

“Current models predict that with so few heavier elements, the discs around stars have a short lifetime, so short in fact that planets cannot grow big,” said the Webb study’s co-investigator Elena Sabbi, chief scientist for Gemini Observatory at the National Science Foundation’s NOIRLab in Tucson. “But Hubble did see those planets, so what if the models were not correct and discs could live longer?”

To test this idea, scientists trained Webb on the Small Magellanic Cloud, a dwarf galaxy that is one of the Milky Way’s nearest neighbors. In particular, they examined the massive, star-forming cluster NGC 346, which also has a relative lack of heavier elements. The cluster served as a nearby proxy for studying stellar environments with similar conditions in the early, distant Universe.

The center of the image contains arcs of orange and pink that form a boat-like shape. One end of these arcs points to the top right of the image, while the other end point toward the bottom left. Another plume of orange and pink expands from the center to the top left of the image. To the right of this plume is a large cluster of white stars. There are various other white stars and a few galaxies of different sizes spread throughout the image. Ten, small, yellow circles overlaid at various points across the image indicate the positions of the ten stars surveyed in this study.
This is a NASA/ESA/CSA James Webb Space Telescope image of NGC 346, a massive star cluster in the Small Magellanic Cloud, a dwarf galaxy that is one of the Milky Way’s nearest neighbors. With its relative lack of elements heavier than helium and hydrogen, the NGC 346 cluster serves as a nearby proxy for studying stellar environments with similar conditions in the early, distant Universe. Ten, small, yellow circles overlaid on the image indicate the positions of the ten stars surveyed in this study.
Credit: NASA, ESA, CSA, STScI, O. C. Jones (UK ATC), G. De Marchi (ESTEC), M. Meixner (USRA)

Hubble observations of NGC 346 from the mid 2000s revealed many stars about 20 to 30 million years old that seemed to still have planet-forming discs around them. This went against the conventional belief that such discs would dissipate after 2 or 3 million years.

“The Hubble findings were controversial, going against not only empirical evidence in our galaxy but also against the current models,” said De Marchi. “This was intriguing, but without a way to obtain spectra of those stars, we could not really establish whether we were witnessing genuine accretion and the presence of discs, or just some artificial effects.”

Now, thanks to Webb’s sensitivity and resolution, scientists have the first-ever spectra of forming, Sun-like stars and their immediate environments in a nearby galaxy.

“We see that these stars are indeed surrounded by discs and are still in the process of gobbling material, even at the relatively old age of 20 or 30 million years,” said De Marchi. “This also implies that planets have more time to form and grow around these stars than in nearby star-forming regions in our own galaxy.”

By observing NGC 346, Webb finds planet-forming discs lived longer in early Universe: new data refutes current theories of planet formation in Universe’s early days. This image features NGC 346, one of the most dynamic star-forming regions in nearby galaxies, as seen by the NASA/ESA/CSA James Webb Space Telescope.
NCG 346 is located in the Small Magellanic Cloud (SMC), a dwarf galaxy close to our Milky Way.
Credit: NASA, ESA, CSA, STScI, A Pagan (STScI)

A New Way of Thinking

This finding refutes previous theoretical predictions that when there are very few heavier elements in the gas around the disc, the star would very quickly blow away the disc. So the disc’s life would be very short, even less than a million years. But if a disc doesn’t stay around the star long enough for the dust grains to stick together and pebbles to form and become the core of a planet, how can planets form?

The researchers explained that there could be two distinct mechanisms, or even a combination, for planet-forming discs to persist in environments scarce in heavier elements.

First, to be able to blow away the disc, the star applies radiation pressure. For this pressure to be effective, elements heavier than hydrogen and helium would have to reside in the gas. But the massive star cluster NGC 346 only has about ten percent of the heavier elements that are present in the chemical composition of our Sun. Perhaps it simply takes longer for a star in this cluster to disperse its disc.

The second possibility is that, for a Sun-like star to form when there are few heavier elements, it would have to start from a larger cloud of gas. A bigger gas cloud will produce a bigger disc. So there is more mass in the disc and therefore it would take longer to blow the disc away, even if the radiation pressure were working in the same way.

“With more matter around the stars, the accretion lasts for a longer time,” said Sabbi. “The discs take ten times longer to disappear. This has implications for how you form a planet, and the type of system architecture that you can have in these different environments. This is so exciting.”

The science team’s paper appears in the 16 December 2024 issue of The Astrophysical Journal.

planet-forming discs Graphic titled Star in NGC 346, Molecular Hydrogen in Protoplanetary Disk, NIRSpec Microshutter Array Spectroscopy showing brightness of 2.02- to 2.37-micron light of a star and its environment (plotted in yellow) and a star’s environment only (plotted in pink) on an xy graph of brightness versus wavelength in microns. Two wavelength bands, ranging from 2.05 to 2.07 and 2.16 to 2.18, are highlighted in red and labeled Hot Atomic Helium, He. A band from 2.11 to 2.13 in blue is labeled Cold Molecular Hydrogen, H 2. The spectrum of the star plus environment (yellow) has prominent peaks at 2.06 and 2.17 microns (He), and at 2.12 microns (H). The spectrum of the star’s environment only (pink) also has peaks at 2.06 and 2.17 microns (He), but not at 2.12 (H). The two spectra are offset vertically for readability. An inset shows them plotted with the same vertical alignment: the helium peaks on the star plus environment spectrum are slightly taller than those of the environment only.
This graph shows, on the bottom left in yellow, a spectrum of one of the 10 target stars in this study (as well as accompanying light from the immediate background environment). Spectral fingerprints of hot atomic helium, cold molecular hydrogen, and hot atomic hydrogen are highlighted. On the top left in magenta is a spectrum slightly offset from the star that includes only light from the background environment. This second spectrum lacks a spectral line of cold molecular hydrogen.
On the right is the comparison of the top and bottom lines. This comparison shows a large peak in the cold molecular hydrogen coming from the star but not its nebular environment. Also, atomic hydrogen shows a larger peak from the star. This indicates the presence of a protoplanetary disc immediately surrounding the star. The data was taken with the microshutter array on the James Webb Space Telescope’s NIRSpec (Near-Infrared Spectrometer) instrument.
Credit: NASA, ESA, CSA, J. Olmsted (STScI)

Press release from ESA Webb

Hubble’s new observations of Jupiter’s Great Red Spot, collected over 90 days between December 2023 to March 2024

Astronomers have observed Jupiter’s legendary Great Red Spot (GRS), an anticyclone large enough to swallow Earth, for at least 150 years. But there are always new surprises – especially when the NASA/ESA Hubble Space Telescope takes a close-up look at it.

Eight Hubble images showing Jupiter’s Great Red Spot. The GRS appears as a bright red oval in the middle of cream-coloured cloud bands. The images trace changes in the GRS’s size, shape, brightness, colour, and twisting, over a period of 90 days between December 2023 and March 2024.
Using Hubble Space Telescope data spanning approximately 90 days (between December 2023 and March 2024) when the giant planet Jupiter was approximately 740 million kilometres from the Sun, astronomers measured the Great Red Spot’s size, shape, brightness, colour, and vorticity over one full oscillation cycle. The data reveal that the Great Red Spot is not as stable as it might look. It was observed going through an oscillation in its elliptical shape, jiggling like a bowl of gelatin. The cause of the 90-day oscillation is unknown.
Credit: NASA, ESA, A. Simon (GSFC)

Hubble’s new observations of the famous red storm, collected over 90 days between December 2023 to March 2024, reveal that the GRS is not as stable as it might look. The recent data show the GRS jiggling like a bowl of gelatin. The combined Hubble images allowed astronomers to assemble a time-lapse movie of the squiggly behaviour of the GRS.

“While we knew its motion varies slightly in its longitude, we didn’t expect to see the size oscillate. As far as we know, it’s not been identified before,” said Amy Simon of NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “This is really the first time we’ve had the proper imaging cadence of the GRS. With Hubble’s high resolution we can say that the GRS is definitively squeezing in and out at the same time as it moves faster and slower. That was very unexpected, and at present there are no hydrodynamic explanations.”

Hubble monitors Jupiter and the other outer solar system planets every year through the Outer Planet Atmospheres Legacy program (OPAL) led by Simon, but these observations were from a program dedicated to the GRS. Understanding the mechanisms of the largest storms in the solar system puts the theory of hurricanes on Earth into a broader cosmic context, which might be applied to better understanding the meteorology on planets around other stars.

Eight images of the giant planet Jupiter spanning approximately 90 days between December 2023 and March 2024. The planet appears striped, with brown and white horizontal bands of clouds. These stripes are called belts (sinking air) and bands (rising air). The polar regions appear more mottled.
Using Hubble Space Telescope data spanning approximately 90 days (between December 2023 and March 2024) when the giant planet Jupiter was approximately 740 million kilometres from the Sun, astronomers measured the Great Red Spot’s size, shape, brightness, colour, and vorticity over a full oscillation cycle. The data reveal that the Great Red Spot is not as stable as it might look. It was observed going through an oscillation in its elliptical shape, jiggling like a bowl of gelatin. The cause of the 90-day oscillation is unknown. The observation is part of the Outer Planet Atmospheres Legacy program (OPAL).
Credit: NASA, ESA, A. Simon (GSFC)

Simon’s team used Hubble to zoom in on the GRS for a detailed look at its size, shape, and any subtle colour changes.

“When we look closely, we see a lot of things are changing from day to day,” said Simon.

This includes ultraviolet-light observations showing that the distinct core of the storm gets brightest when the GRS is at its largest size in its oscillation cycle. This indicates less haze absorption in the upper atmosphere.

“As it accelerates and decelerates, the GRS is pushing against the windy jet streams to the north and south of it,” said co-investigator Mike Wong of the University of California at Berkeley. “It’s similar to a sandwich where the slices of bread are forced to bulge out when there’s too much filling in the middle.” 

Wong contrasted this to Neptune, where dark spots can drift wildly in latitude without strong jet streams to hold them in place. Jupiter’s Great Red Spot has been held at a southern latitude, trapped between the jet streams, for the extent of Earth-bound telescopic observations.

The team has continued watching the GRS shrink since the OPAL program began 10 years ago. They predict it will keep shrinking before taking on a stable, less-elongated, shape. 

“Right now it’s over-filling its latitude band relative to the wind field. Once it shrinks inside that band the winds will really be holding it in place,” said Simon.

The team predicts that the GRS will probably stabilise in size, but for now Hubble only observed it for one oscillation cycle.

“This is a great example of the power of Hubble’s exquisite imaging for monitoring of the atmospheres of the outer planets,” said co-investigator Patrick Irwin of the University of Oxford. “With these new observations we were able to study the dynamics and evolution of the GRS over three months, building on our understanding of the long-term properties of Jupiter obtained from the OPAL program over the past decade.”

The researchers hope that in the future other high-resolution images from Hubble might identify other Jovian parameters that indicate the underlying cause of the oscillation.

 

Press release from ESA Hubble

Hubble tracks the stormy weather on Jupiter

 

The giant planet Jupiter, in all its banded glory, is revisited by the NASA/ESA Hubble Space Telescope in these latest images, taken on 5–6 January 2024, that capture both sides of the planet. Hubble monitors Jupiter and the other outer Solar System planets every year under the Outer Planet Atmospheres Legacy programme (OPAL). This is because these large worlds are shrouded in clouds and hazes stirred up by violent winds, leading to a kaleidoscope of ever-changing weather patterns.

The largest and nearest of the giant outer planets, Jupiter’s colourful clouds present an ever-changing kaleidoscope of shapes and colours. This is a planet where there is always stormy weather: cyclones, anticyclones, wind shear, and the largest storm in the Solar System, the Great Red Spot. Jupiter has no solid surface and is perpetually covered with largely ammonia ice-crystal clouds that are only about 48 kilometres thick in an atmosphere that’s tens of thousands of kilometres deep and give the planet its banded appearance. The bands are produced by air flowing in different directions at various latitudes with speeds approaching 560 kilometres per hour. Lighter-hued areas where the atmosphere rises are called zones. Darker regions where air falls are called belts. When these opposing flows interact, storms and turbulence appear. Hubble tracks these dynamic changes every year with unprecedented clarity, and there are always surprises. The many large storms and small white clouds seen in Hubble’s latest images are evidence for a lot of activity going on in Jupiter’s atmosphere right now.

 

 

Press release from ESA Hubble.

Hubble watches spoke season on Saturn

Planet Saturn with bright white rings, multi-colored main sphere, and moons Mimas, Dione, and Enceladus. Spoke features on the left and right sides of the rings appear like faint grey smudges against the rings’ bright backdrop, about midway from the planet to the rings’ outer edge. Above the rings plane, the planet’s bands are shades of red, orange and yellow, with bright white nearer the equator.
This photo of Saturn was taken by the NASA/ESA Hubble Space Telescope on 22 October 2023, when the ringed planet was approximately 1365 million kilometres from Earth. Hubble’s ultra-sharp vision reveals a phenomenon called ring spokes.
Saturn’s spokes are transient features that rotate along with the rings. Their ghostly appearance only persists for two or three rotations around Saturn. During active periods, freshly-formed spokes continuously add to the pattern.
In 1981, NASA’s Voyager 2 first photographed the ring spokes. Hubble continues observing Saturn annually as the spokes come and go. This cycle has been captured by Hubble’s Outer Planets Atmospheres Legacy (OPAL) program that began nearly a decade ago to annually monitor weather changes on all four gas-giant outer planets.
Hubble’s crisp images show that the frequency of spoke apparitions is seasonally driven, first appearing in OPAL data in 2021 but only on the morning (left) side of the rings. Long-term monitoring shows that both the number and contrast of the spokes vary with Saturn’s seasons. Saturn is tilted on its axis like Earth and has seasons lasting approximately seven years.
This year, these ephemeral structures appear on both sides of the planet simultaneously as they spin around the giant world. Although they look small compared with Saturn, their length and width can stretch longer than Earth’s diameter!
The OPAL team notes that the leading theory is that spokes are tied to interactions between Saturn’s powerful magnetic field and the sun. Planetary scientists think that electrostatic forces generated from this interaction levitate dust or ice above the ring to form the spokes, though after several decades no theory perfectly predicts the spokes. Continued Hubble observations may eventually help solve the mystery.
Credit: Credit: NASA, ESA, STScI, A. Simon (NASA-GSFC)

This photo of Saturn was taken by the NASA/ESA Hubble Space Telescope on 22 October 2023, when the ringed planet was approximately 1365 million kilometres from Earth. Hubble’s ultra-sharp vision reveals a phenomenon called ring spokes.

Saturn’s spokes are transient features that rotate along with the rings. Their ghostly appearance only persists for two or three rotations around Saturn. During active periods, freshly-formed spokes continuously add to the pattern.

In 1981, NASA’s Voyager 2 first photographed the ring spokes. Hubble continues observing Saturn annually as the spokes come and go. This cycle has been captured by Hubble’s Outer Planets Atmospheres Legacy (OPAL) program that began nearly a decade ago to annually monitor weather changes on all four gas-giant outer planets.

Hubble’s crisp images show that the frequency of spoke apparitions is seasonally driven, first appearing in OPAL data in 2021 but only on the morning (left) side of the rings. Long-term monitoring shows that both the number and contrast of the spokes vary with Saturn’s seasons. Saturn is tilted on its axis like Earth and has seasons lasting approximately seven years.

This year, these ephemeral structures appear on both sides of the planet simultaneously as they spin around the giant world. Although they look small compared with Saturn, their length and width can stretch longer than Earth’s diameter!

The OPAL team notes that the leading theory is that spokes are tied to interactions between Saturn’s powerful magnetic field and the sun. Planetary scientists think that electrostatic forces generated from this interaction levitate dust or ice above the ring to form the spokes, though after several decades no theory perfectly predicts the spokes. Continued Hubble observations may eventually help solve the mystery. This image was created with Hubble data from proposal 16995 (A. Simon).

Planet Saturn with bright white rings, multi-colored main sphere, and moons Mimas, Dione, and Enceladus. Spoke features on the left and right sides of the rings appear like faint grey smudges against the rings’ bright backdrop, about midway from the planet to the rings’ outer edge. Above the rings plane, the planet’s bands are shades of red, orange and yellow, with bright white nearer the equator.
This photo of Saturn was taken by the NASA/ESA Hubble Space Telescope on 22 October 2023, when the ringed planet was approximately 1365 million kilometres from Earth. Hubble’s ultra-sharp vision reveals a phenomenon called ring spokes.
Saturn’s spokes are transient features that rotate along with the rings. Their ghostly appearance only persists for two or three rotations around Saturn. During active periods, freshly-formed spokes continuously add to the pattern.
In 1981, NASA’s Voyager 2 first photographed the ring spokes. Hubble continues observing Saturn annually as the spokes come and go. This cycle has been captured by Hubble’s Outer Planets Atmospheres Legacy (OPAL) program that began nearly a decade ago to annually monitor weather changes on all four gas-giant outer planets.
Hubble’s crisp images show that the frequency of spoke apparitions is seasonally driven, first appearing in OPAL data in 2021 but only on the morning (left) side of the rings. Long-term monitoring shows that both the number and contrast of the spokes vary with Saturn’s seasons. Saturn is tilted on its axis like Earth and has seasons lasting approximately seven years.
This year, these ephemeral structures appear on both sides of the planet simultaneously as they spin around the giant world. Although they look small compared with Saturn, their length and width can stretch longer than Earth’s diameter!
The OPAL team notes that the leading theory is that spokes are tied to interactions between Saturn’s powerful magnetic field and the sun. Planetary scientists think that electrostatic forces generated from this interaction levitate dust or ice above the ring to form the spokes, though after several decades no theory perfectly predicts the spokes. Continued Hubble observations may eventually help solve the mystery.
Credit: NASA, ESA, STScI, A. Simon (NASA-GSFC)

 

Press release from ESA Hubble.

JWST rings in the holidays with the ringed planet Uranus

The NASA/ESA/CSA James Webb Space Telescope recently trained its sights on unusual and enigmatic Uranus, an ice giant that spins on its side. Webb captured this dynamic world with rings, moons, storms, and other atmospheric features — including a seasonal polar cap. The image expands upon a two-colour version released earlier this year, adding additional wavelength coverage for a more detailed look.

An image with a black background. The planet Uranus is a glowing orb near the centre surrounded by rings. The planet appears blue with a large, white patch taking up the right half. The patch is whitest at the centre, then fades into blue at it expands from right to left. A thin outline of Uranus is also white. Around the planet is a system of nested rings. There are faint orange and off-white smudges, some oval, some circular, that are background galaxies scattered throughout the image. Several bright blue point sources closer to Uranus are the planet’s moons. There is also a bright star at the left of the field, with 8 diffraction spikes.
This image of Uranus from NIRCam (Near-Infrared Camera) on the NASA/ESA/CSA James Webb Space Telescope shows the planet and its rings in new clarity. The planet’s seasonal north polar cap gleams in a bright white, and Webb’s exquisite sensitivity resolves Uranus’ dim inner and outer rings, including the Zeta ring—the extremely faint and diffuse ring closest to the planet.
This Webb image also shows 14 of the planet’s 27 moons: Oberon, Titania, Umbriel, Juliet, Perdita, Rosalind, Puck, Belinda, Desdemona, Cressida, Ariel, Miranda, Bianca, and Portia.
One day on Uranus is about 17 hours, so the planet’s rotation is relatively quick. This makes it supremely difficult for observatories with a sharp eye like Webb to capture one simple image of the entire planet – storms and other atmospheric features, and the planet’s moons, move visibly within minutes. This image combines several longer and shorter exposures of this dynamic system to correct for those slight changes throughout the observing time.
Webb’s extreme sensitivity also picks up a smattering of background galaxies—most appear as orange smudges, and there are two larger, fuzzy white galaxies to the right of the planet in this field of view.
Credit: NASA, ESA, CSA, STScI

With its exquisite sensitivity, Webb captured Uranus’ dim inner and outer rings, including the elusive Zeta ring—the extremely faint and diffuse ring closest to the planet. It also imaged many of the planet’s 27 known moons, even seeing some small moons within the rings.

In visible wavelengths, Uranus appeared as a placid, solid blue ball. In infrared wavelengths, Webb is revealing a strange and dynamic ice world filled with exciting atmospheric features.

One of the most striking of these is the planet’s seasonal north polar cap. Compared to the image from earlier this year, some details of the cap are easier to see in these newer images. These include the bright, white, inner cap and the dark lane in the bottom of the polar cap, toward the lower latitudes.

Several bright storms can also be seen near and below the southern border of the polar cap. The number of these storms, and how frequently and where they appear in Uranus’s atmosphere, might be due to a combination of seasonal and meteorological effects.

The planet Uranus on a black background. The planet appears blue with a large, white patch taking up the right half. The patch is whitest at the centre, then fades into blue as it expands from right to left. A thin outline of Uranus is also white. Around the planet is a system of nested rings. The outermost ring is the brightest while the innermost ring is the faintest. Unlike Saturn’s horizontal rings, the rings of Uranus are vertical and so they appear to surround the planet in an oval shape. There are 9 blueish white dots scattered around the rings.
This image of Uranus from NIRCam (Near-Infrared Camera) on the NASA/ESA/CSA James Webb Space Telescope shows the planet and its rings in new clarity. The Webb image exquisitely captures Uranus’s seasonal north polar cap, including the bright, white, inner cap and the dark lane in the bottom of the polar cap. Uranus’ dim inner and outer rings are also visible in this image, including the elusive Zeta ring—the extremely faint and diffuse ring closest to the planet.
This Webb image also shows 9 of the planet’s 27 moons. They are the blue dots that surround the planet’s rings. Clockwise starting at 2 o’clock, they are: Rosalind, Puck, Belinda, Desdemona, Cressida, Bianca, Portia, Juliet, and Perdita. The orbits of these moons share the 98-degree tilt of their parent planet relative to the plane of the solar system.
One day on Uranus is about 17 hours, so the planet’s rotation is relatively quick. This makes it supremely difficult for observatories with a sharp eye like Webb to capture one simple image of the entire planet – storms and other atmospheric features, and the planet’s moons, move visibly within minutes. This image combines several longer and shorter exposures of this dynamic system to correct for those slight changes throughout the observing time.
Credit: NASA, ESA, CSA, STScI

The polar cap becomes prominent when the planet’s pole begins to point towards the Sun, as it approaches solstice and receives more sunlight. Uranus reaches its next solstice in 2028, and astronomers are eager to watch any possible changes in the structure of these features. Webb will help disentangle the seasonal and meteorological effects that influence Uranus’s storms, which is critical to help astronomers understand the planet’s complex atmosphere.

Because Uranus orbits on its side at a tilt of about 98 degrees, it has the most extreme seasons in the Solar System. For nearly a quarter of each Uranian year, the Sun shines over one pole, plunging the other half of the planet into a dark, 21-year-long winter.

With Webb’s unparalleled infrared resolution and sensitivity, astronomers now see Uranus and its unique features with groundbreaking new clarity. These details, especially of the close-in Zeta ring, will be invaluable to planning any future missions to Uranus.

Uranus can also serve as a proxy for studying the many far-off, similarly sized exoplanets that have been discovered in the last few decades. This “exoplanet in our backyard” can help astronomers understand how planets of this size work, what their meteorology is like, and how they formed. This can in turn help us understand our own solar system as a whole by placing it in a larger context.

An image with a black background, a glowing orb near the centre surrounded by rings. There are smudges that are background galaxies scattered throughout the image and several bright blue point sources that are the planet’s moons. At the bottom left are compass arrows indicating the orientation of the image on the sky. Below the image is a colour key showing which filters were used to create the image and which visible-light colour is assigned to each infrared-light filter.
This image of Uranus, captured by Webb’s Near-Infrared Camera (NIRCam), shows compass arrows, scale bar, and colour key for reference.
The north and east compass arrows show the orientation of the image on the sky. Note that the relationship between north and east on the sky (as seen from below) is flipped relative to direction arrows on a map of the ground (as seen from above).
The scale bar is labelled 16 arcseconds. The length of the scale bar is approximately one-seventh the total width of the image
This image shows invisible near-infrared wavelengths of light that have been translated into visible-light colours. The colour key shows which NIRCam filters were used when collecting the light. The colour of each filter name is the visible light colour used to represent the infrared light that passes through that filter.
Webb’s NIRCam filters for this image are F140M (blue), F210M (cyan), F300M (yellow), and F460M (orange).
Credit: NASA, ESA, CSA, STScI

Press release from ESA Webb

Webb finds carbon source on surface of Jupiter’s moon Europa

Jupiter’s moon Europa is one of a handful of worlds in our Solar System that could potentially harbour conditions suitable for life. Previous research has shown that beneath its water-ice crust lies a salty ocean of liquid water with a rocky seafloor. However, planetary scientists had not confirmed whether or not that ocean contained the chemicals needed for life, particularly carbon.

Europa (NIRCam image)
Webb’s NIRCam (Near Infrared Camera) captured this picture of the surface of Jupiter’s moon Europa. Webb identified carbon dioxide on the icy surface of Europa that likely originated in the moon’s subsurface ocean. This discovery has important implications for the potential habitability of Europa’s ocean. The moon appears mostly blue because it is brighter at shorter infrared wavelengths. The white features correspond with the chaos terrain Powys Regio (left) and Tara Regio (centre and right), which show enhanced carbon dioxide ice on the surface.
Credit:
NASA, ESA, CSA, G. Villanueva (NASA/GSFC), S. Trumbo (Cornell Univ.), A. Pagan (STScI)

Astronomers using data from the NASA/ESA/CSA James Webb Space Telescope have identified carbon dioxide in a specific region on the icy surface of Europa. Analysis indicates that this carbon likely originated in the subsurface ocean and was not delivered by meteorites or other external sources. Moreover, it was deposited on a geologically recent timescale. This discovery has important implications for the potential habitability of Europa’s ocean.

On Earth, life likes chemical diversity — the more diversity, the better. We’re carbon-based life. Understanding the chemistry of Europa’s ocean will help us determine whether it’s hostile to life as we know it, or whether it might be a good place for life,

said Geronimo Villanueva of NASA’s Goddard Space Flight Center in Greenbelt, Maryland, lead author of one of two independent papers describing the findings.

We now think that we have observational evidence that the carbon we see on Europa’s surface came from the ocean. That’s not a trivial thing. Carbon is a biologically essential element,

added Samantha Trumbo of Cornell University in Ithaca, New York, lead author of the second paper analysing this data.

NASA plans to launch its Europa Clipper spacecraft, which will perform dozens of close flybys of Europa to further investigate whether it could have conditions suitable for life, in October 2024.

A Surface-Ocean Connection

Webb finds that on Europa’s surface, carbon dioxide is most abundant in a region called Tara Regio — a geologically young area of generally resurfaced terrain known as ‘chaos terrain’. The surface ice has been disrupted, and there has likely been an exchange of material between the subsurface ocean and the icy surface.

Previous observations from the Hubble Space Telescope show evidence for ocean-derived salt in Tara Regio,” explained Trumbo. “Now we’re seeing that carbon dioxide is heavily concentrated there as well. We think this implies that the carbon probably has its ultimate origin in the internal ocean.

Scientists are debating to what extent Europa’s ocean connects to its surface. I think that question has been a big driver of Europa exploration,” said Villanueva. “This suggests that we may be able to learn some basic things about the ocean’s composition even before we drill through the ice to get the full picture.

Both teams identified the carbon dioxide using data from the integral field unit of Webb’s Near-Infrared Spectrograph (NIRSpec). This instrument mode provides spectra with a resolution of 320 x 320 kilometres over a field of view of diameter 3128 kilometres on the surface of Europa, allowing astronomers to determine where specific chemicals are located.

Map of Europa's surface
This graphic shows a map of Europa’s surface with NIRCam (Near Infrared Camera) in the first panel and compositional maps derived from NIRSpec/IFU (Near Infrared Spectrograph’s Integral Field Unit) data in the following three panels. In the compositional maps, the white pixels correspond to carbon dioxide in the large-scale region of disrupted chaos terrain known as Tara Regio (centre and right), with additional concentrations within portions of the chaos region Powys Regio (left). The second and third panels show evidence of crystalline carbon dioxide, while the fourth panel indicates a complexed and amorphous form of carbon dioxide.
Astronomers using Webb have found carbon on the chaos terrain of Tara Regio and Powys Regio. Surface ices in these regions have been disrupted, and there has likely been a relatively recent exchange of material between the subsurface ocean and the icy surface. Carbon, a universal building block for life as we know it, likely originated in Europa’s ocean. The discovery suggests a potentially habitable environment in the salty subsurface ocean of Europa.
The NIRSpec/IFU images appear pixelated because Europa is 10 x 10 pixels across in the detector’s field of view.
Credit:
NASA, ESA, CSA, G. Villanueva (NASA/GSFC), S. Trumbo (Cornell Univ.), A. Pagan (STScI)

Carbon dioxide isn’t stable on Europa’s surface. Therefore, the scientists say it’s likely that it was supplied on a geologically recent timescale — a conclusion bolstered by its concentration in a region of young terrain.

These observations only took a few minutes of the observatory’s time,

said Heidi Hammel of the Association of Universities for Research in Astronomy, a Webb interdisciplinary scientist leading Webb’s Cycle 1 Guaranteed Time Observations of the Solar System.

Even in this short period of time, we were able to do really big science. This work gives a first hint of all the amazing Solar System science we’ll be able to do with Webb.”

Searching for a Plume

Villanueva’s team also looked for evidence of a plume of water vapour erupting from Europa’s surface. Researchers using the NASA/ESA Hubble Space Telescope reported tentative detections of plumes in 2013, 2016, and 2017. However, finding definitive proof has been difficult.

The new Webb data show no evidence of plume activity, which allowed Villanueva’s team to set a strict upper limit on the rate at which material is potentially being ejected. The team stressed, however, that their non-detection does not rule out a plume.

There is always a possibility that these plumes are variable and that you can only see them at certain times. All we can say with 100% confidence is that we did not detect a plume at Europa when we made these observations with Webb,” said Hammel.

These findings may help inform NASA’s Europa Clipper mission, as well as ESA’s Jupiter Icy Moons Explorer, Juice, which was launched on 14 April 2023. Juice will make detailed observations of the giant gas planet and its three large ocean-bearing moons — Ganymede, Callisto and Europa — with a suite of remote sensing, geophysical and in situ instruments. The mission will characterise these moons as both planetary objects and possible habitats, explore Jupiter’s complex environment in depth, and study the wider Jupiter system as an archetype for gas giants across the Universe.

This is a great first result of what Webb will bring to the study of Jupiter’s moons,” said co-author Guillaume Cruz-Mermy, formerly of Université Paris-Saclay and current ESA Research Fellow at the European Space Astronomy Centre. “I’m looking forward to seeing what else we can learn about their surface properties from these and future observations.

The two papers associated with this research will be published in Science on 21 September 2023.

Europa (NIRCam image, cropped)
Webb’s NIRCam (Near Infrared Camera) captured this picture of the surface of Jupiter’s moon Europa. Webb identified carbon dioxide on the icy surface of Europa that likely originated in the moon’s subsurface ocean. This discovery has important implications for the potential habitability of Europa’s ocean. The moon appears mostly blue because it is brighter at shorter infrared wavelengths. The white features correspond with the chaos terrain Powys Regio (left) and Tara Regio (centre and right), which show enhanced carbon dioxide ice on the surface.
Credit:
NASA, ESA, CSA, G. Villanueva (NASA/GSFC), S. Trumbo (Cornell Univ.), A. Pagan (STScI)

 

Press release from ESA Webb.

GJ 367 b, A PLANET WITH AN IRON HEART IN AN EXTRASOLAR SYSTEM

THE DISCOVERY MADE BY A TEAM AT THE UNIVERSITY OF TURIN ADDS TO THE PUZZLE HOW PLANETS FORM

Researchers at the University of Turin and at the Thüringer Landessternwarte have confirmed that the extrasolar planet GJ 367 b has an ultra-high density – almost twice the density of Earth. The research team also found two more planets that orbit the same star.

GJ 367 b
Artist’s illustration of the planetary system orbiting the star GJ 367, which comprises the inner ultra-dense planet GJ 367 b, and the two outer low-mass planets GJ 367 c and d – © Elisa Goffo

Over the past decades, astronomers have found several thousand extrasolar planets. Extrasolar planets orbit stars outside our solar system. The next frontier in this research field is to learn more about their composition and internal structure, in order to develop a better understanding of how planets form.

Elisa Goffo, Ph.D. student at the Physics Department of the University of Turin (Italy) and at the Thüringer Landessternwarte (Germany), together with an international research team, has made a unique discovery about the planet GJ 367 b that raises interesting questions about how planets are born. She is the lead author of the article Company for the ultra-high density, ultra-short period sub-Earth GJ 367 b: discovery of two additional low-mass planets at 11.5 and 34 days published in The Astrophysical Journal Letters.

Elisa Goffo is part of the international KESPRINT collaboration, which confirmed that the ultra-short period exoplanet GJ 367 b, whose orbital period is only 7.7 hours, is also ultra-dense. The density of a planet can be determined from its mass and radius. GJ 367 b is ultra-dense because the researchers found its density to be 10.2 grams per cubic centimeter. That is almost twice the density of Earth, suggesting that this extrasolar planet consists almost entirely of iron.

An unusual composition

Such a composition of a planet is very rare, raising questions about its formation.

You could compare GJ 367 b to an Earth-like planet with its rocky mantle stripped away. This could have important implications for the formation of GJ 367 b. We believe that the planet might have formed like the Earth, with a dense core made mainly of iron, surrounded by a silicate-rich mantle. A catastrophic event could have stripped away its rocky mantle, leaving the dense core of the planet naked. Alternatively, GJ 367 b was born in an iron-rich region of the protoplanetary disc”,

explains Elisa Goffo. While observing GJ 367 b, the team discovered two additional low-mass planets that orbit around the star GJ 367 in 11.5 days and 34 days, respectively. These three planets and their star comprise an extrasolar system.

GJ 367 b was first found with the Transiting Exoplanet Survey Satellite (TESS), a space telescope operated by NASA. TESS uses the transit method to measure the radii of exoplanets – among other properties. In order to precisely measure the mass of GJ 367 b and confirm that the planet has a very high density, the KESPRINT researchers at the University of Turin and at the Thüringer Landessternwarte acquired nearly 300 radial velocity measurements using the HARPS spectrograph, a high-precision instrument installed at the 3.6 meter telescope operated by the European Southern Observatory (ESO) at La Silla Observatory, Chile.

Thanks to our intensive observations with the HARPS spectrograph we discovered the presence of two additional low-mass planets with orbital periods of 11.5 and 34 days, which reduce the number of possible scenarios that might have led to the formation of such a dense planet”, says Davide Gandolfi, Professor at the University of Turin. “While GJ 367 b might have formed in an iron-rich environment, we do not exclude a formation scenario involving violent events like giant planet collisions.

Artie Hatzes, director at the Thüringer Landessternwarte, underscores the relevance of this discovery: “GJ 367 b is an extreme case of an exoplanet. Before we can develop viable theories of its formation, we must precisely measure the planetary mass and radius. We expect an extrasolar system to consist of several planets, so it was important to search for and to find other planets orbiting in the system – to study its architecture.

MORE INFORMATION

KESPRINT: Consisting of more than 40 members in nine countries (Czech Republic, Denmark, Germany, Italy, Japan, Spain, Sweden, UK, USA), the KESPRINT research consortium is devoted to the confirmation and characterization of transiting exoplanets found by space missions (e.g. Kepler, K2, TESS), with a special emphasis on the characterization of the smallest planets. Its members are from the Dipartimento di Fisica, Università di Torino, Italy, Thüringer Landessternwarte Tautenburg, Germany, Institute of Planetary Research, German Aerospace Center (DLR), Germany, Technische Universität Berlin, Germany, Rheinisches Institut für Umweltforschung an der Universität zu Köln, Germany, Astronomical Institute of the Czech Academy of Sciences, Czech Republic, Chalmers University of Technology, Sweden, Instituto de Astrofísica de Canarias, Spain, Mullard Space Science Laboratory, University College London, UK, University of Oxford, UK, Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Denmark, Astronomy Department and Van Vleck Observatory, Wesleyan University, USA, McDonald Observatory, The University of Texas at Austin, USA, The University of Tokyo, Japan, Astrobiology Center, National Institute of Natural Sciences, Japan.

GJ 367 b and the exoplanet naming convention: Planets are usually named after their host stars, adding a lowercase letter. A planet around the star GJ 367 is called GJ 367 b, c, or d. However, the planet GJ 367 b and its star GJ 367 were named in 2022 during the “NameExoWorlds” project coordinated by the International Astronomical Union. The planet GJ 367 b is called Tahay and its star is called Añañuca, after Chilean wildflowers.

The 7.7 hours period during which GJ 367 b orbits its star stands out even among other ultra-short period planets because it is such a short orbit. One year on this planet is only 7.7 hours long. Its mass is 60 % that of Earth’s mass. Its radius is 70 % that of Earth’s radius. Therefore, it is smaller and less massive than the Earth.

Due to its proximity to the host star, the dayside surface of the planet is expected to have a temperature of almost 1.100 degrees Celsius. The star GJ 367 (Añañuca) is located roughly 31 light years from Earth, i.e., it takes about 31 years for the light to travel this distance.

How the transit method works: NASA’s TESS telescope uses the transit method to search for planets around stars other than the Sun. A transit occurs when a planet moves between its host star and us. Whenever it passes in front of its star, it blocks a small portion of the star’s light. The transit method measures this change in brightness, which yields the orbital period and inclination, the planetary radius, and other parameters.

How the radial velocity method works: The KESPRINT team observes exoplanets with the radial velocity method, which detects the existence of a planet around a star via the Doppler effect. We usually say that planets orbit stars, but that’s not entirely true: planets and stars orbit around their common center of mass! Stars emit light at different colors that become bluer or redder depending on whether the stars are moving toward or away from us while orbiting around the center of mass. When combined with the transit method, radial velocity measurements provide the mass of the planet.

The Physics Department at the University of Turin. Over the past decade, the Exoplanet group at the Physics Department of the University of Turin has focused on the detection and characterization of planets orbiting stars other than the Sun, especially those transiting their host stars, combining space-based observations with high-precision spectroscopy. The group at the University of Turin has led and coordinated the observations of GJ 367 carried out with the HARPS spectrograph.

Press release from the University of Turin.