Ad
Ad
Ad
Tag

NASA

Browsing

Rocks on floor of Jezero Crater, Mars, show signs of sustained interactions with water

Jezero Crater water Mars, Perseverance rover
Rocks on floor of Jezero Crater, Mars, show signs of sustained interactions with water. Perseverance rover taking a selfie over the rock it collected two core samples from on Mars. Perseverance rover taking a selfie over the rock it collected two core samples from on Mars. Image credit NASA/JPL-Caltech/MSSS

Portland, Ore., USA: Since the Perseverance rover landed in Jezero crater on Mars in February, the rover and its team of scientists back on Earth have been hard at work exploring the floor of the crater that once held an ancient lake. Perseverance and the Mars 2020 mission are looking for signs of ancient life on Mars and preparing a returnable cache of samples for later analyses on Earth.

Katie Stack Morgan is the Mars 2020 Deputy Project Scientist and a research scientist at NASA’s Jet Propulsion Laboratory (JPL), and will be providing an update on early results on the Mars 2020 rover mission on Sunday, 10 Oct., at the Geological Society of America’s Connects 2021 annual meeting in Portland, Oregon.

With Perseverance’s high-tech suite of on-board instruments, the scientific team has been analyzing the rocks of the crater floor, interpreted for now as igneous rocks, presumably a volcanic lava flow.

“The idea that this could be a volcanic rock was really appealing to us from a sample return perspective because igneous rocks are great for getting accurate age dates. Jezero was one of the few ancient crater lake sites on Mars that seemed to have both incredible sedimentary deposits as well as volcanic deposits that could help us construct the geologic time scale of Mars,” said Stack Morgan.

The lake system and rivers that drained into Jezero crater were likely active around 3.8–3.6 billion years ago, but the ability to directly date the age of the rocks in laboratories on Earth will provide the first definitive insight into the window of time that Mars may have been a habitable planet.

Using Perseverance’s abrasion tool—which scratches the top surface of the rock to reveal the rock and its textures—the team discovered that the crater floor seems to be composed of coarser-grained igneous minerals, and there are also a variety of salts in the rocks. Observations suggest that water caused extensive weathering and alteration of the crater floor, meaning that the rocks were subjected to water for a significant duration of time.

After using its on-board tools to analyze characteristics of the crater floor, the next phase was for Perseverance to collect a rock sample using its drill feature. However, after Perseverance completed its first attempt at drilling, the core sample tube came up empty.

“We spent a couple of days looking around the rover thinking that the core might have fallen out of the bit. Then we looked back down the drill hole thinking it might never have made it out of the hole. All these searches turned up empty. In the end we concluded that the core was pulverized during drilling,” said Stack Morgan.

The rock likely became so altered and weakened from interactions with water that the vibrations and strength from the Perseverance drill pulverized the sample.

Scientists then targeted another rock that appeared more resistant to weathering, and Perseverance was able to successfully collect two core samples—the first in its sample collection. Perseverance’s cache of samples will be part of a multi-spacecraft handoff, still in development, that will hopefully be returned to Earth in the early 2030s. From there, scientists in laboratories on Earth will date and analyze the rocks to see if there might be any signs of ancient Martian life.

“The rocks of the crater floor were not originally envisioned as the prime astrobiology target of the mission, but Mars always surprises us when we look up close. We are excited to find that even these rocks have experienced sustained interaction with water and could have been habitable for ancient martian microbes,” said Stack Morgan.

Hubble data confirms galaxies lacking dark matter

NGC1052-DF2 Hubble galaxies dark matter
Hubble data confirms galaxies lacking dark matter: NGC1052-DF2. Credits: NASA, ESA, Z. Shen and P. van Dokkum (Yale University), and S. Danieli (Institute for Advanced Study)

The most accurate distance measurement yet of ultra-diffuse galaxy (UDG) NGC1052-DF2 (DF2) confirms beyond any shadow of a doubt that it is lacking in dark matter. The newly measured distance of 22.1 +/-1.2 megaparsecs was obtained by an international team of researchers led by Zili Shen and Pieter van Dokkum of Yale University and Shany Danieli, a NASA Hubble Fellow at the Institute for Advanced Study.

“Determining an accurate distance to DF2 has been key in supporting our earlier results,” stated Danieli. “The new measurement reported in this study has crucial implications for estimating the physical properties of the galaxy, thus confirming its lack of dark matter.”

The results, published in Astrophysical Journal Letters on June 9, 2021, are based on 40 orbits of NASA’s Hubble Space Telescope, with imaging by the Advanced Camera for Surveys and a “tip of the red giant branch” (TRGB) analysis, the gold standard for such refined measurements. In 2019, the team published results measuring the distance to neighboring UDG NGC1052-DF4 (DF4) based on 12 Hubble orbits and TRGB analysis, which provided compelling evidence of missing dark matter. This preferred method expands on the team’s 2018 studies that relied on “surface brightness fluctuations” to gauge distance. Both galaxies were discovered with the Dragonfly Telephoto Array at the New Mexico Skies observatory.

NGC1052-DF2 Hubble galaxies dark matter
Hubble data confirms galaxies lacking dark matter: NGC1052-DF2. Credits: NASA, ESA, Z. Shen and P. van Dokkum (Yale University), and S. Danieli (Institute for Advanced Study)

“We went out on a limb with our initial Hubble observations of this galaxy in 2018,” van Dokkum said. “I think people were right to question it because it’s such an unusual result. It would be nice if there were a simple explanation, like a wrong distance. But I think it’s more fun and more interesting if it actually is a weird galaxy.”

In addition to confirming earlier distance findings, the Hubble results indicated that the galaxies were located slightly farther away than previously thought, strengthening the case that they contain little to no dark matter. If DF2 were closer to Earth, as some astronomers claim, it would be intrinsically fainter and less massive, and the galaxy would need dark matter to account for the observed effects of the total mass.

Dark matter is widely considered to be an essential ingredient of galaxies, but this study lends further evidence that its presence may not be inevitable. While dark matter has yet to be directly observed, its gravitational influence is like a glue that holds galaxies together and governs the motion of visible matter. In the case of DF2 and DF4, researchers were able to account for the motion of stars based on stellar mass alone, suggesting a lack or absence of dark matter. Ironically, the detection of galaxies deficient in dark matter will likely help to reveal its puzzling nature and provide new insights into galactic evolution.

While DF2 and DF4 are both comparable in size to the Milky Way galaxy, their total masses are only about one percent of the Milky Way’s mass. These ultra-diffuse galaxies were also found to have a large population of especially luminous globular clusters.

This research has generated a great deal of scholarly interest, as well as energetic debate among proponents of alternative theories to dark matter, such as Modified Newtonian dynamics (MOND). However, with the team’s most recent findings–including the relative distances of the two UDGs to NGC1052–such alternative theories seem less likely. Additionally, there is now little uncertainty in the team’s distance measurements given the use of the TRGB method. Based on fundamental physics, this method depends on the observation of red giant stars that emit a flash after burning through their helium supply that always happens at the same brightness.

“There’s a saying that extraordinary claims require extraordinary evidence, and the new distance measurement strongly supports our previous finding that DF2 is missing dark matter,” stated Shen. “Now it’s time to move beyond the distance debate and focus on how such galaxies came to exist.”

Moving forward, researchers will continue to hunt for more of these oddball galaxies, while considering a number of questions such as: How are UDGs formed? What do they tell us about standard cosmological models? How common are these galaxies, and what other unique properties do they have? It will take uncovering many more dark matter-less galaxies to resolve these mysteries and the ultimate question of what dark matter really is.

###

The published ApJL article is available here: https://iopscience.iop.org/article/10.3847/2041-8213/ac0335

A pre-publication is available at: https://arxiv.org/abs/2104.03319

About the Institute

The Institute for Advanced Study is one of the world’s foremost centers for theoretical research and intellectual inquiry. Located in Princeton, N.J., the IAS is dedicated to independent study across the sciences and humanities. Founded in 1930, the Institute is devoted to advancing the frontiers of knowledge without concern for immediate application. From founding IAS Professor Albert Einstein to the foremost thinkers of today, the IAS enables bold, curiosity-driven innovation to enrich society in unexpected ways.

Each year, the Institute welcomes more than 200 of the world’s most promising post-doctoral researchers and scholars who are selected and mentored by a permanent Faculty, each of whom are preeminent leaders in their fields. Among present and past Faculty and Members there have been 35 Nobel Laureates, 42 of the 60 Fields Medalists, and 21 of the 24 Abel Prize Laureates, as well as many MacArthur Fellows and Wolf Prize winners.

 

Press release from the Institute for Advanced Study

NASA Selects 2 Missions to Study ‘Lost Habitable’ World of Venus

NASA has selected two new missions to Venus, Earth’s nearest planetary neighbor. Part of NASA’s Discovery Program, the missions aim to understand how Venus became an inferno-like world when it has so many other characteristics similar to ours – and may have been the first habitable world in the solar system, complete with an ocean and Earth-like climate.

These investigations are the final selections from four mission concepts NASA picked in February 2020 as part of the agency’s Discovery 2019 competition. Following a competitive, peer-review process, the two missions were chosen based on their potential scientific value and the feasibility of their development plans. The project teams will now work to finalize their requirements, designs, and development plans.

NASA is awarding approximately $500 million per mission for development. Each is expected to launch in the 2028-2030 timeframe.

Venus 2 missions NASA
NASA Selects 2 Missions to Study ‘Lost Habitable’ World of Venus. Venus hides a wealth of information that could help us better understand Earth and exoplanets. NASA’s JPL is designing mission concepts to survive the planet’s extreme temperatures and atmospheric pressure. This image is a composite of data from NASA’s Magellan spacecraft and Pioneer Venus Orbiter. Credits: NASA/JPL-Caltech

The selected missions are:

 

DAVINCI+ (Deep Atmosphere Venus Investigation of Noble gases, Chemistry, and Imaging)

DAVINCI+ will measure the composition of Venus’ atmosphere to understand how it formed and evolved, as well as determine whether the planet ever had an ocean. The mission consists of a descent sphere that will plunge through the planet’s thick atmosphere, making precise measurements of noble gases and other elements to understand why Venus’ atmosphere is a runaway hothouse compared the Earth’s.

In addition, DAVINCI+ will return the first high resolution pictures of the unique geological features on Venus known as “tesserae,” which may be comparable to Earth’s continents, suggesting that Venus has plate tectonics. This would be the first U.S.-led mission to Venus’ atmosphere since 1978, and the results from DAVINCI+ could reshape our understanding of terrestrial planet formation in our solar system and beyond. James Garvin of Goddard Space Flight Center in Greenbelt, Maryland, is the principal investigator. Goddard provides project management.

 

VERITAS (Venus Emissivity, Radio Science, InSAR, Topography, and Spectroscopy)

VERITAS will map Venus’ surface to determine the planet’s geologic history and understand why it developed so differently than Earth. Orbiting Venus with a synthetic aperture radar, VERITAS will chart surface elevations over nearly the entire planet to create 3D reconstructions of topography and confirm whether processes such as plate tectonics and volcanism are still active on Venus.

VERITAS also will map infrared emissions from Venus’ surface to map its rock type, which is largely unknown, and determine whether active volcanoes are releasing water vapor into the atmosphere. Suzanne Smrekar of NASA’s Jet Propulsion Laboratory in Southern California, is the principal investigator. JPL provides project management. The German Aerospace Center will provide the infrared mapper with the Italian Space Agency and France’s Centre National d’Études Spatiales contributing to the radar and other parts of the mission.

“We’re revving up our planetary science program with intense exploration of a world that NASA hasn’t visited in over 30 years,” said Thomas Zurbuchen, NASA’s associate administrator for science. “Using cutting-edge technologies that NASA has developed and refined over many years of missions and technology programs, we’re ushering in a new decade of Venus to understand how an Earth-like planet can become a hothouse. Our goals are profound. It is not just understanding the evolution of planets and habitability in our own solar system, but extending beyond these boundaries to exoplanets, an exciting and emerging area of research for NASA.”

Zurbuchen added that he expects powerful synergies across NASA’s science programs, including the James Webb Space Telescope. He anticipates data from these missions will be used by the broadest possible cross section of the scientific community.

“It is astounding how little we know about Venus, but the combined results of these missions will tell us about the planet from the clouds in its sky through the volcanoes on its surface all the way down to its very core,” said Tom Wagner, NASA’s Discovery Program scientist. “It will be as if we have rediscovered the planet.”

 

In addition to the two missions, NASA selected a pair of technology demonstrations to fly along with them. VERITAS will host the Deep Space Atomic Clock-2, built by JPL and funded by NASA’s Space Technology Mission Directorate. The ultra-precise clock signal generated with this technology will ultimately help enable autonomous spacecraft maneuvers and enhance radio science observations.

DAVINCI+ will host the Compact Ultraviolet to Visible Imaging Spectrometer (CUVIS) built by Goddard. CUVIS will make high resolution measurements of ultraviolet light using a new instrument based on freeform optics. These observations will be used to determine the nature of the unknown ultraviolet absorber in Venus’ atmosphere that absorbs up to half the incoming solar energy.

Established in 1992, NASA’s Discovery Program has supported the development and implementation of over 20 missions and instruments. These selections are part of the ninth Discovery Program competition.

The concepts were chosen from proposals submitted in 2019 under NASA Announcement of Opportunity NNH19ZDA010O. The selected investigations will be managed by the Planetary Missions Program Office at NASA’s Marshall Space Flight Center in Huntsville, Alabama, as part of the Discovery Program. The Discovery Program conducts space science investigations in the Planetary Science Division of NASA’s Science Mission Directorate. The goals of the program are to provide frequent opportunities for principal investigator-led investigations in planetary sciences that can be accomplished under a not-to-exceed cost cap.

 

For more information about NASA’s planetary science, visit: https://www.nasa.gov/solarsystem

Press release from NASA on the 2 new missions to Venus.

Hubble sees new atmosphere forming on a rocky exoplanet, GJ 1132 b

The planet GJ 1132 b appears to have begun life as a gaseous world with a thick blanket of atmosphere. Starting out at several times the radius of Earth, this so-called “sub-Neptune” quickly lost its primordial hydrogen and helium atmosphere, which was stripped away by the intense radiation from its hot, young star. In a short period of time, it was reduced to a bare core about the size of Earth.

GJ 1132 b
This image is an artist’s impression of the exoplanet GJ 1132 b. For the first time, scientists using the NASA/ESA Hubble Space Telescope have found evidence of volcanic activity reforming the atmosphere on this rocky planet, which has a similar density, size, and age to that of Earth. To the surprise of astronomers, new observations from Hubble have uncovered a second atmosphere that has replaced the planet’s first atmosphere. It is rich in hydrogen, hydrogen cyanide, methane and ammonia, and also has a hydrocarbon haze. Astronomers theorise that hydrogen from the original atmosphere was absorbed into the planet’s molten magma mantle and is now being slowly released by volcanism to form a new atmosphere. This second atmosphere, which continues to leak away into space, is continually being replenished from the reservoir of hydrogen in the mantle’s magma. Credit: NASA, ESA, and R. Hurt (IPAC/Caltech), CC BY 4.0

To the surprise of astronomers, new observations from Hubble [1] have uncovered a secondary atmosphere that has replaced the planet’s first atmosphere. It is rich in hydrogen, hydrogen cyanide, methane and ammonia, and also has a hydrocarbon haze. Astronomers theorise that hydrogen from the original atmosphere was absorbed into the planet’s molten magma mantle and is now being slowly released by volcanism to form a new atmosphere. This second atmosphere, which continues to leak away into space, is continually being replenished from the reservoir of hydrogen in the mantle’s magma.

“This second atmosphere comes from the surface and interior of the planet, and so it is a window onto the geology of another world,” explained team member Paul Rimmer of the University of Cambridge, UK. “A lot more work needs to be done to properly look through it, but the discovery of this window is of great importance.”

Pictured here is the region around the host star of the exoplanet GJ 1132 b. Credit:
ESA/Hubble, Digitized Sky Survey 2, CC BY 4.0.
Acknowledgement: Davide De Martin

“We first thought that these highly radiated planets would be pretty boring because we believed that they lost their atmospheres,” said team member Raissa Estrela of the Jet Propulsion Laboratory at the California Institute of Technology in Pasadena, California, USA. But we looked at existing observations of this planet with Hubble and realised that there is an atmosphere there.”

“How many terrestrial planets don’t begin as terrestrials? Some may start as sub-Neptunes, and they become terrestrials through a mechanism whereby light evaporates the primordial atmosphere. This process works early in a planet’s life, when the star is hotter,” said team leader Mark Swain of the Jet Propulsion Laboratory. “Then the star cools down and the planet’s just sitting there. So you’ve got this mechanism that can cook off the atmosphere in the first 100 million years, and then things settle down. And if you can regenerate the atmosphere, maybe you can keep it.”

In some ways, GJ 1132 b has various parallels to Earth, but in some ways it is also very different. Both have similar densities, similar sizes, and similar ages, being about 4.5 billion years old. Both started with a hydrogen-dominated atmosphere, and both were hot before they cooled down. The team’s work even suggests that GJ 1132 b and Earth have similar atmospheric pressure at the surface.

This plot shows the spectrum of the atmosphere of an Earth sized rocky exoplanet, GJ 1132 b, which is overlaid on an artist’s impression of the planet. The orange line represents the model spectrum. In comparison, the observed spectrum is shown as blue dots representing averaged data points, along with their error bars.  This analysis is consistent with GJ 1132 b being predominantly a hydrogen atmosphere with a mix of methane and hydrogen cyanide. The planet also has aerosols which cause scattering of light.  This is the first time a so-called “secondary atmosphere,” which was replenished after the planet lost its primordial atmosphere, has been detected on a world outside of our solar system. Credit:
NASA, ESA, and P. Jeffries (STScI)

However, the planets’ formation histories are profoundly different. Earth is not believed to be the surviving core of a sub-Neptune. And Earth orbits at a comfortable distance from our yellow dwarf Sun. GJ 1132 b is so close to its host red dwarf star that it completes an orbit the star once every day and a half. This extremely close proximity keeps GJ 1132 b tidally locked, showing the same face to its star at all times — just as our moon keeps one hemisphere permanently facing Earth.

“The question is, what is keeping the mantle hot enough to remain liquid and power volcanism?” asked Swain. “This system is special because it has the opportunity for quite a lot of tidal heating.”

The phenomenon of tidal heating occurs through friction, when energy from a planet’s orbit and rotation is dispersed as heat inside the planet. GJ 1132 b is in an elliptical orbit, and the tidal forces acting on it are strongest when it is closest to or farthest from its host star. At least one other planet in the host star’s system also exerts a gravitational pull on the planet. The consequences are that the planet is squeezed or stretched by this gravitational “pumping.” That tidal heating keeps the mantle liquid for a long time. A nearby example in our own Solar System is the Jovian moon, Io, which has continuous volcanism as a result of a tidal tug-of-war between Jupiter and the neighbouring Jovian moons.

The team believes the crust of GJ 1132 b is extremely thin, perhaps only hundreds of feet thick. That’s much too feeble to support anything resembling volcanic mountains. Its flat terrain may also be cracked like an eggshell by tidal flexing. Hydrogen and other gases could be released through such cracks.

“This atmosphere, if it’s thin — meaning if it has a surface pressure similar to Earth — probably means you can see right down to the ground at infrared wavelengths. That means that if astronomers use the James Webb Space Telescope to observe this planet, there’s a possibility that they will see not the spectrum of the atmosphere, but rather the spectrum of the surface,” explained Swain. “And if there are magma pools or volcanism going on, those areas will be hotter. That will generate more emission, and so they’ll potentially be looking at the actual geological activity — which is exciting!”

This result is significant because it gives exoplanet scientists a way to figure out something about a planet’s geology from its atmosphere,” added Rimmer. “It is also important for understanding where the rocky planets in our own Solar System — Mercury, Venus, Earth and Mars, fit into the bigger picture of comparative planetology, in terms of the availability of hydrogen versus oxygen in the atmosphere.”

###

Notes:

[1] The observations were conducted as part of the Hubble observing program #14758 (PI: Zach Berta-Thomson).

NASA Mars Perseverance
This image was captured while NASA’s Perseverance rover drove on Mars for the first time on March 4, 2021. One of Perseverance’s Hazard Avoidance Cameras (Hazcams) captured this image as the rover completed a short traverse and turn from its landing site in Jezero Crater.
Credits: NASA/JPL-Caltech

NASA’s Mars 2020 Perseverance rover performed its first drive on Mars March 4, covering 21.3 feet (6.5 meters) across the Martian landscape. The drive served as a mobility test that marks just one of many milestones as team members check out and calibrate every system, subsystem, and instrument on Perseverance. Once the rover begins pursuing its science goals, regular commutes extending 656 feet (200 meters) or more are expected.

“When it comes to wheeled vehicles on other planets, there are few first-time events that measure up in significance to that of the first drive,” said Anais Zarifian, Mars 2020 Perseverance rover mobility test bed engineer at NASA’s Jet Propulsion Laboratory in Southern California. “This was our first chance to ‘kick the tires’ and take Perseverance out for a spin. The rover’s six-wheel drive responded superbly. We are now confident our drive system is good to go, capable of taking us wherever the science leads us over the next two years.”

The drive, which lasted about 33 minutes, propelled the rover forward 13 feet (4 meters), where it then turned in place 150 degrees to the left and backed up 8 feet (2.5 meters) into its new temporary parking space. To help better understand the dynamics of a retrorocket landing on the Red Planet, engineers used Perseverance’s Navigation and Hazard Avoidance Cameras to image the spot where Perseverance touched down, dispersing Martian dust with plumes from its engines.

 

More Than Roving

The rover’s mobility system is not the only thing getting a test drive during this period of initial checkouts. On Feb. 26 – Perseverance’s eighth Martian day, or sol, since landing – mission controllers completed a software update, replacing the computer program that helped land Perseverance with one they will rely on to investigate the planet.

More recently, the controllers checked out Perseverance’s Radar Imager for Mars’ Subsurface Experiment (RIMFAX) and Mars Oxygen In-Situ Resource Utilization Experiment (MOXIE) instruments, and deployed the Mars Environmental Dynamics Analyzer (MEDA) instrument’s two wind sensors, which extend out from the rover’s mast. Another significant milestone occurred on March 2, or sol 12, when engineers unstowed the rover’s 7-foot-long (2-meter-long) robotic arm for the first time, flexing each of its five joints over the course of two hours.

“Tuesday’s first test of the robotic arm was a big moment for us,” said Robert Hogg, Mars 2020 Perseverance rover deputy mission manager. “That’s the main tool the science team will use to do close-up examination of the geologic features of Jezero Crater, and then we’ll drill and sample the ones they find the most interesting. When we got confirmation of the robotic arm flexing its muscles, including images of it working beautifully after its long trip to Mars – well, it made my day.”

Upcoming events and evaluations include more detailed testing and calibration of science instruments, sending the rover on longer drives, and jettisoning covers that shield both the adaptive caching assembly (part of the rover’s Sample Caching System) and the Ingenuity Mars Helicopter during landing. The experimental flight test program for the Ingenuity Mars Helicopter will also take place during the rover’s commissioning.

Through it all, the rover is sending down images from the most advanced suite of cameras ever to travel to Mars. The mission’s cameras have already sent about 7,000 images. On Earth, Perseverance’s imagery flows through the powerful Deep Space Network (DSN), managed by NASA’s Space Communications and Navigation (SCaN) program. In space, several Mars orbiters play an equally important role.

“Orbiter support for downlink of data has been a real gamechanger,” said Justin Maki, chief engineer for imaging and the imaging scientist for the Mars 2020 Perseverance rover mission at JPL. “When you see a beautiful image from Jezero, consider that it took a whole team of Martians to get it to you. Every picture from Perseverance is relayed by either the European Space Agency’s Trace Gas Orbiter, or NASA’s MAVEN, Mars Odyssey, or Mars Reconnaissance Orbiter. They are important partners in our explorations and our discoveries.”

The sheer volume of imagery and data already coming down on this mission has been a welcome bounty for Matt Wallace, who recalls waiting anxiously for the first images to trickle in during NASA’s first Mars rover mission, Sojourner, which explored Mars in 1997. On March 3, Wallace became the mission’s new project manager. He replaced John McNamee, who is stepping down as he intended, after helming the project for nearly a decade.

“John has provided unwavering support to me and every member of the project for over a decade,” said Wallace. “He has left his mark on this mission and team, and it has been my privilege to not only call him boss but also my friend.”

 

Touchdown Site Named

With Perseverance departing from its touchdown site, mission team scientists have memorialized the spot, informally naming it for the late science fiction author Octavia E. Butler. The groundbreaking author and Pasadena, California, native was the first African American woman to win both the Hugo Award and Nebula Award, and she was the first science fiction writer honored with a MacArthur Fellowship. The location where Perseverance began its mission on Mars now bears the name “Octavia E. Butler Landing.”

Official scientific names for places and objects throughout the solar system – including asteroids, comets, and locations on planets – are designated by the International Astronomical Union. Scientists working with NASA’s Mars rovers have traditionally given unofficial nicknames to various geological features, which they can use as references in scientific papers.

“Butler’s protagonists embody determination and inventiveness, making her a perfect fit for the Perseverance rover mission and its theme of overcoming challenges,” said Kathryn Stack Morgan, deputy project scientist for Perseverance. “Butler inspired and influenced the planetary science community and many beyond, including those typically under-represented in STEM fields.”

“I can think of no better person to mark this historic landing site than Octavia E. Butler, who not only grew up next door to JPL in Pasadena, but she also inspired millions with her visions of a science-based future,” said Thomas Zurbuchen, NASA associate administrator for science. “Her guiding principle, ‘When using science, do so accurately,’ is what the science team at NASA is all about. Her work continues to inspire today’s scientists and engineers across the globe – all in the name of a bolder, more equitable future for all.”

Butler, who died in 2006, authored such notable works as “Kindred,” “Bloodchild,” “Speech Sounds,” “Parable of the Sower,” “Parable of the Talents,” and the “Patternist” series. Her writing explores themes of race, gender, equality, and humanity, and her works are as relevant today as they were when originally written and published.

 

More About the Mission

A key objective of Perseverance’s mission on Mars is astrobiology, including the search for signs of ancient microbial life. The rover will characterize the planet’s geology and past climate, pave the way for human exploration of the Red Planet, and be the first mission to collect and cache Martian rock and regolith.

Subsequent NASA missions, in cooperation with ESA (European Space Agency), would send spacecraft to Mars to collect these sealed samples from the surface and return them to Earth for in-depth analysis.

The Mars 2020 Perseverance mission is part of NASA’s Moon to Mars exploration approach, which includes Artemis missions to the Moon that will help prepare for human exploration of the Red Planet.

JPL, which is managed for NASA by Caltech in Pasadena, built and manages operations of the Perseverance rover.

 

Press release from NASA.

NASA’s MAVEN Observes Martian Night Sky Pulsing in Ultraviolet Light

Vast areas of the Martian night sky pulse in ultraviolet light, according to images from NASA’s MAVEN spacecraft. The results are being used to illuminate complex circulation patterns in the Martian atmosphere.

Vast areas of the Martian night sky pulse in ultraviolet light, according to images from NASA’s MAVEN spacecraft. The results are being used to illuminate complex circulation patterns in the Martian atmosphere.

The MAVEN team was surprised to find that the atmosphere pulsed exactly three times per night, and only during Mars’ spring and fall. The new data also revealed unexpected waves and spirals over the winter poles, while also confirming the Mars Express spacecraft results that this nightglow was brightest over the winter polar regions.

Martian night ultraviolet nightglow
This is an image of the ultraviolet “nightglow” in the Martian atmosphere. Green and white false colors represent the intensity of ultraviolet light, with white being the brightest. The nightglow was measured at about 70 kilometers (approximately 40 miles) altitude by the Imaging UltraViolet Spectrograph instrument on NASA’s MAVEN spacecraft. A simulated view of the Mars globe is added digitally for context. The image shows an intense brightening in Mars’ nightside atmosphere. The brightenings occur regularly after sunset on Martian evenings during fall and winter seasons, and fade by midnight. The brightening is caused by increased downwards winds which enhance the chemical reaction creating nitric oxide which causes the glow.
Credits: NASA/MAVEN/Goddard Space Flight Center/CU/LASP

“MAVEN’s images offer our first global insights into atmospheric motions in Mars’ middle atmosphere, a critical region where air currents carry gases between the lowest and highest layers,” said Nick Schneider of the University of Colorado’s Laboratory for Atmospheric and Space Physics (LASP), Boulder, Colorado. The brightenings occur where vertical winds carry gases down to regions of higher density, speeding up the chemical reactions that create nitric oxide and power the ultraviolet glow. Schneider is instrument lead for the MAVEN Imaging Ultraviolet Spectrograph (IUVS) instrument that made these observations, and lead author of a paper on this research appearing August 6 in the Journal of Geophysical Research, Space Physics. Ultraviolet light is invisible to the human eye but detectable by specialized instruments.

The diagram explains the cause of Mars’ glowing nightside atmosphere. On Mars’ dayside, molecules are torn apart by energetic solar photons. Global circulation patterns carry the atomic fragments to the nightside, where downward winds increase the reaction rate for the atoms to reform molecules. The downwards winds occur near the poles at some seasons and in the equatorial regions at others. The new molecules hold extra energy which they emit as ultraviolet light.
Credits: NASA/MAVEN/Goddard Space Flight Center/CU/LASP

“The ultraviolet glow comes mostly from an altitude of about 70 kilometers (approximately 40 miles), with the brightest spot about a thousand kilometers (approximately 600 miles) across, and is as bright in the ultraviolet as Earth’s northern lights,” said Zac Milby, also of LASP. “Unfortunately, the composition of Mars’ atmosphere means that these bright spots emit no light at visible wavelengths that would allow them to be seen by future Mars astronauts. Too bad: the bright patches would intensify overhead every night after sunset, and drift across the sky at 300 kilometers per hour (about 180 miles per hour).”

The pulsations reveal the importance of planet-encircling waves in the Mars atmosphere. The number of waves and their speed indicates that Mars’ middle atmosphere is influenced by the daily pattern of solar heating and disturbances from the topography of Mars’ huge volcanic mountains. These pulsating spots are the clearest evidence that the middle atmosphere waves match those known to dominate the layers above and below.

“MAVEN’s main discoveries of atmosphere loss and climate change show the importance of these vast circulation patterns that transport atmospheric gases around the globe and from the surface to the edge of space.” said Sonal Jain, also of LASP.

Next, the team plans to look at nightglow “sideways”, instead of down from above, using data taken by IUVS looking just above the edge of the planet. This new perspective will be used to understand the vertical winds and seasonal changes even more accurately.

The Martian nightglow was first observed by the SPICAM instrument on the European Space Agency’s Mars Express spacecraft. However, IUVS is a next-generation instrument better able to repeatedly map out the nightside glow, finding patterns and periodic behaviors. Many planets including Earth have nightglow, but MAVEN is the first mission to collect so many images of another planet’s nightglow.

###

The research was funded by the MAVEN mission. MAVEN’s principal investigator is based at the University of Colorado’s Laboratory for Atmospheric and Space Physics, Boulder, and NASA Goddard manages the MAVEN project. NASA is exploring our Solar System and beyond, uncovering worlds, stars, and cosmic mysteries near and far with our powerful fleet of space and ground-based missions.

 

 

 

Press release from NASA, Goddard Space Flight Center.

Hubble Sees Summertime on Saturn

Saturn is truly the lord of the rings in this latest snapshot from NASA’s Hubble Space Telescope, taken on July 4, 2020, when the opulent giant world was 839 million miles from Earth. This new Saturn image was taken during summer in the planet’s northern hemisphere.

Saturn summertime Hubble summer
NASA’s Hubble Space Telescope captured this image of Saturn on July 4, 2020. Two of Saturn’s icy moons are clearly visible in this exposure: Mimas at right, and Enceladus at bottom. This image is taken as part of the Outer Planets Atmospheres Legacy (OPAL) project. OPAL is helping scientists understand the atmospheric dynamics and evolution of our solar system’s gas giant planets. In Saturn’s case, astronomers continue tracking shifting weather patterns and storms.
Credits: NASA, ESA, A. Simon (Goddard Space Flight Center), M.H. Wong (University of California, Berkeley), and the OPAL Team

 

Hubble found a number of small atmospheric storms. These are transient features that appear to come and go with each yearly Hubble observation. The banding in the northern hemisphere remains pronounced as seen in Hubble’s 2019 observations, with several bands slightly changing color from year to year. The ringed planet’s atmosphere is mostly hydrogen and helium with traces of ammonia, methane, water vapor, and hydrocarbons that give it a yellowish-brown color.

Hubble photographed a slight reddish haze over the northern hemisphere in this color composite. This may be due to heating from increased sunlight, which could either change the atmospheric circulation or perhaps remove ices from aerosols in the atmosphere. Another theory is that the increased sunlight in the summer months is changing the amounts of photochemical haze produced. “It’s amazing that even over a few years, we’re seeing seasonal changes on Saturn,” said lead investigator Amy Simon of NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Conversely, the just-now-visible south pole has a blue hue, reflecting changes in Saturn’s winter hemisphere.

Hubble’s sharp view resolves the finely etched concentric ring structure. The rings are mostly made of pieces of ice, with sizes ranging from tiny grains to giant boulders. Just how and when the rings formed remains one of our solar system’s biggest mysteries. Conventional wisdom is that they are as old as the planet, over 4 billion years. But because the rings are so bright – like freshly fallen snow – a competing theory is that they may have formed during the age of the dinosaurs. Many astronomers agree that there is no satisfactory theory that explains how rings could have formed within just the past few hundred million years. “However, NASA’s Cassini spacecraft measurements of tiny grains raining into Saturn’s atmosphere suggest the rings can only last for 300 million more years, which is one of the arguments for a young age of the ring system,” said team member Michael Wong of the University of California, Berkeley.

Two of Saturn’s icy moons are clearly visible in this exposure: Mimas at right, and Enceladus at bottom.

This image is taken as part of the Outer Planets Atmospheres Legacy (OPAL) project. OPAL is helping scientists understand the atmospheric dynamics and evolution of our solar system’s gas giant planets. In Saturn’s case, astronomers continue tracking shifting weather patterns and storms.

The Hubble Space Telescope is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy in Washington, D.C.

 

 

Press release from NASA, on Hubble capturing summertime data from Saturn.

What started out as a hunt for ice lurking in polar lunar craters turned into an unexpected finding that could help clear some muddy history about the Moon’s formation.

Team members of the Miniature Radio Frequency (Mini-RF) instrument on NASA’s Lunar Reconnaissance Orbiter (LRO) spacecraft found new evidence that the Moon’s subsurface might be richer in metals, like iron and titanium, than researchers thought. That finding, published July 1 in Earth and Planetary Science Letters, could aid in drawing a clearer connection between Earth and the Moon.

“The LRO mission and its radar instrument continue to surprise us with new insights about the origins and complexity of our nearest neighbor,” said Wes Patterson, Mini-RF principal investigator from the Johns Hopkins Applied Physics Laboratory (APL) in Laurel, Maryland, and a study coauthor.

Moon metallic
This image based on data from NASA’s Lunar Reconnaissance Orbiter spacecraft shows the face of the Moon we see from Earth. The more we learn about our nearest neighbor, the more we begin to understand the Moon as a dynamic place with useful resources that could one day even support human presence. Credits: NASA / GSFC / Arizona State University

Substantial evidence points to the Moon as the product of a collision between a Mars-sized protoplanet and young Earth, forming from the gravitational collapse of the remaining cloud of debris. Consequently, the Moon’s bulk chemical composition closely resembles that of Earth.

Look in detail at the Moon’s chemical composition, however, and that story turns murky. For example, in the bright plains of the Moon’s surface, called the lunar highlands, rocks contain smaller amounts of metal-bearing minerals relative to Earth. That finding might be explained if Earth had fully differentiated into a core, mantle and crust before the impact, leaving the Moon largely metal-poor. But turn to the Moon’s maria — the large, darker plains — and the metal abundance becomes richer than that of many rocks on Earth.

This discrepancy has puzzled scientists, leading to numerous questions and hypotheses regarding how much the impacting protoplanet may have contributed to the differences. The Mini-RF team found a curious pattern that could lead to an answer.

Using Mini-RF, the researchers sought to measure an electrical property within lunar soil piled on crater floors in the Moon’s northern hemisphere. This electrical property is known as the dielectric constant, a number that compares the relative abilities of a material and the vacuum of space to transmit electric fields, and could help locate ice lurking in the crater shadows. The team, however, noticed this property increasing with crater size.

For craters approximately 1 to 3 miles (2 to 5 kilometers) wide, the dielectric constant of the material steadily increased as the craters grew larger, but for craters 3 to 12 miles (5 to 20 kilometers) wide, the property remained constant.

“It was a surprising relationship that we had no reason to believe would exist,” said Essam Heggy, coinvestigator of the Mini-RF experiments from the University of Southern California in Los Angeles and lead author of the published paper.

Discovery of this pattern opened a door to a new possibility. Because meteors that form larger craters also dig deeper into the Moon’s subsurface, the team reasoned that the increasing dielectric constant of the dust in larger craters could be the result of meteors excavating iron and titanium oxides that lie below the surface. Dielectric properties are directly linked to the concentration of these metal minerals.

If their hypothesis were true, it would mean only the first few hundred meters of the Moon’s surface is scant in iron and titanium oxides, but below the surface, there’s a steady increase to a rich and unexpected bonanza.

Comparing crater floor radar images from Mini-RF with metal oxide maps from the LRO Wide-Angle Camera, Japan’s Kaguya mission and NASA’s Lunar Prospector spacecraft, the team found exactly what it had suspected. The larger craters, with their increased dielectric material, were also richer in metals, suggesting that more iron and titanium oxides had been excavated from the depths of 0.3 to 1 mile (0.5 to 2 kilometers) than from the upper 0.1 to 0.3 miles (0.2 to 0.5 kilometers) of the lunar subsurface.

“This exciting result from Mini-RF shows that even after 11 years in operation at the Moon, we are still making new discoveries about the ancient history of our nearest neighbor,” said Noah Petro, the LRO project scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “The MINI-RF data is incredibly valuable for telling us about the properties of the lunar surface, but we use that data to infer what was happening over 4.5 billion years ago!”

These results follow recent evidence from NASA’s Gravity Recovery and Interior Laboratory (GRAIL) mission that suggests a significant mass of dense material exists just a few tens to hundreds of kilometers beneath the Moon’s enormous South Pole-Aitken basin, indicating that dense materials aren’t uniformly distributed in the Moon’s subsurface.

The team emphasizes that the new study can’t directly answer the outstanding questions about the Moon’s formation, but it does reduce the uncertainty in the distribution of iron and titanium oxides in the lunar subsurface and provide critical evidence needed to better understand the Moon’s formation and its connection to Earth.

“It really raises the question of what this means for our previous formation hypotheses,” Heggy said.

Anxious to uncover more, the researchers have already started examining crater floors in the Moon’s southern hemisphere to see if the same trends exist there.

LRO is managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland for the Science Mission Directorate at NASA Headquarters in Washington. Mini-RF was designed, built and tested by a team led by APL, Naval Air Warfare Center, Sandia National Laboratories, Raytheon and Northrop Grumman.

For more information on LRO, visit:

https://www.nasa.gov/lro

 

Press release from NASA/Space Goddard Flight Center, by Jeremy Rehm

The most extensive system of haze layers ever observed in the solar system have been discovered and characterised on the planet Saturn

High-resolution images obtained by the Cassini spacecraft were used for this purpose by the Planetary Science Group at the University of the Basque Country

Saturn hexagon
High-resolution images of Saturn’s Hexagon obtained by the Cassini spacecraft. Credits: UPV/EHU

 

A rich variety of meteorological phenomena take place in the extensive hydrogen atmosphere of the planet Saturn, a world about ten times the size of the Earth. They help us to better understand those that operate in a similar way in the Earth’s atmosphere.  Featuring among them due to its uniqueness is the well-known “hexagon”, an amazing wave structure that surrounds the planet’s polar region and whose shape looks as if it had been drawn by a geometrician.

Discovered in 1980 by NASA’s Voyager 1 and 2 spacecraft, it has been observed without interruption since then, despite the planet’s long, strong cycle of seasons. A fast, narrow jet stream flows inside this gigantic planetary wave where winds reach maximum speeds of about 400 km/h. Yet, strangely enough, the wave itself remains almost static; in other words, it barely shifts with respect to the planet’s rotation. All these properties mean that the “hexagon” is a highly attractive phenomenon for meteorologists and planet atmosphere researchers.

Cassini, which was in orbit around the planet between 2004 and 2017, took a vast quantity of images from a whole range of distances from the planet and viewing angles. In June 2015 its main camera obtained very high-resolution images of the planet’s limb which are capable of solving details of between 1 and 2 km; they captured the hazes located above the clouds that shape the hexagonal wave. In addition, it used many colour filters, from ultraviolet to near infrared, thus enabling the composition of these hazes to be studied. To complete this study, images produced by the Hubble Space Telescope taken 15 days later and showing the hexagon not on the limb but seen from above were also used. “The Cassini images have enabled us to discover that, just as if a sandwich had been formed, the hexagon has a multi-layered system of at least seven mists that extend from the summit of its clouds to an altitude of more than 300 km above them,” said Professor Agustín Sánchez-Lavega, who led the study.  “Other cold worlds, such as Saturn’s satellite Titan or the dwarf planet Pluto, also have layers of hazes, but not in such numbers nor as regularly spaced out”.

The vertical extent of each haze layer is between approximately 7 and 18 km thick, and according to the spectral analysis, they contain minute particles with radii of the order of 1 micron. Their chemical composition is exotic for us, because, owing to the low temperatures in Saturn’s atmosphere ranging between 120° C and 180° C below zero, they could comprise hydrocarbon ice crystallites, such as acetylene, propyne, propane, diacetylene or even butane in the case of the highest clouds.

Another aspect studied by the team is the regularity in the vertical distribution of the hazes. The hypothesis put forward is that the hazes are organised by the vertical propagation of gravity waves that produce oscillations in the density and temperature of the atmosphere, a well-known phenomenon on the Earth and on other planets. The researchers raise the possibility that it could be the very dynamics of the hexagon itself and its powerful jet stream that may be responsible for the formation of these gravity waves. On the Earth, too, waves of this type produced by the undulating jet stream travelling at speeds of 100 km/h from West to East in the mid-latitudes have been observed. The phenomenon could be similar on both planets, even though the peculiarities of Saturn mean that it is the only case in the solar system. This is an aspect that remains subject to future research.

Saturn's hexagon
Santiago Pérez-Hoyos, Agustín Sánchez-Lavega, Teresa del Río-Gaztelurrutia and Ricardo Hueso. Credits: UPV/EHU

About the authors at the UPV/EHU  

Agustín Sánchez-Lavega is professor of physics at the UPV/EHU-University of the Basque Country, head of the GCP-Planetary Science Group and holder of the 2016 Euskadi Award for Research.  Teresa del Río-Gaztelurrutia and Ricardo Hueso are tenured lecturers, and Santiago Pérez-Hoyos is a permanent research doctor; they all belong to the GCP.

bibliographic reference

 

Press release on Saturn’s hexagon from the University of the Basque Country.