The most extensive system of haze layers ever observed in the solar system have been discovered and characterised on the planet Saturn

High-resolution images obtained by the Cassini spacecraft were used for this purpose by the Planetary Science Group at the University of the Basque Country

Saturn hexagon
High-resolution images of Saturn’s Hexagon obtained by the Cassini spacecraft. Credits: UPV/EHU


A rich variety of meteorological phenomena take place in the extensive hydrogen atmosphere of the planet Saturn, a world about ten times the size of the Earth. They help us to better understand those that operate in a similar way in the Earth’s atmosphere.  Featuring among them due to its uniqueness is the well-known “hexagon”, an amazing wave structure that surrounds the planet’s polar region and whose shape looks as if it had been drawn by a geometrician.

Discovered in 1980 by NASA’s Voyager 1 and 2 spacecraft, it has been observed without interruption since then, despite the planet’s long, strong cycle of seasons. A fast, narrow jet stream flows inside this gigantic planetary wave where winds reach maximum speeds of about 400 km/h. Yet, strangely enough, the wave itself remains almost static; in other words, it barely shifts with respect to the planet’s rotation. All these properties mean that the “hexagon” is a highly attractive phenomenon for meteorologists and planet atmosphere researchers.

Cassini, which was in orbit around the planet between 2004 and 2017, took a vast quantity of images from a whole range of distances from the planet and viewing angles. In June 2015 its main camera obtained very high-resolution images of the planet’s limb which are capable of solving details of between 1 and 2 km; they captured the hazes located above the clouds that shape the hexagonal wave. In addition, it used many colour filters, from ultraviolet to near infrared, thus enabling the composition of these hazes to be studied. To complete this study, images produced by the Hubble Space Telescope taken 15 days later and showing the hexagon not on the limb but seen from above were also used. “The Cassini images have enabled us to discover that, just as if a sandwich had been formed, the hexagon has a multi-layered system of at least seven mists that extend from the summit of its clouds to an altitude of more than 300 km above them,” said Professor Agustín Sánchez-Lavega, who led the study.  “Other cold worlds, such as Saturn’s satellite Titan or the dwarf planet Pluto, also have layers of hazes, but not in such numbers nor as regularly spaced out”.

The vertical extent of each haze layer is between approximately 7 and 18 km thick, and according to the spectral analysis, they contain minute particles with radii of the order of 1 micron. Their chemical composition is exotic for us, because, owing to the low temperatures in Saturn’s atmosphere ranging between 120° C and 180° C below zero, they could comprise hydrocarbon ice crystallites, such as acetylene, propyne, propane, diacetylene or even butane in the case of the highest clouds.

Another aspect studied by the team is the regularity in the vertical distribution of the hazes. The hypothesis put forward is that the hazes are organised by the vertical propagation of gravity waves that produce oscillations in the density and temperature of the atmosphere, a well-known phenomenon on the Earth and on other planets. The researchers raise the possibility that it could be the very dynamics of the hexagon itself and its powerful jet stream that may be responsible for the formation of these gravity waves. On the Earth, too, waves of this type produced by the undulating jet stream travelling at speeds of 100 km/h from West to East in the mid-latitudes have been observed. The phenomenon could be similar on both planets, even though the peculiarities of Saturn mean that it is the only case in the solar system. This is an aspect that remains subject to future research.

Saturn's hexagon
Santiago Pérez-Hoyos, Agustín Sánchez-Lavega, Teresa del Río-Gaztelurrutia and Ricardo Hueso. Credits: UPV/EHU

About the authors at the UPV/EHU  

Agustín Sánchez-Lavega is professor of physics at the UPV/EHU-University of the Basque Country, head of the GCP-Planetary Science Group and holder of the 2016 Euskadi Award for Research.  Teresa del Río-Gaztelurrutia and Ricardo Hueso are tenured lecturers, and Santiago Pérez-Hoyos is a permanent research doctor; they all belong to the GCP.

bibliographic reference


Press release on Saturn’s hexagon from the University of the Basque Country.

Predicted versus observed epidemic curves over time. (copyright: Nature) Our model aggregates population outflow from Wuhan from January 1 to 24, 2020 to provide a reference growth pattern (i.e. epidemic curves) for COVID-19’s spread. Differences in the predicted and confirmed growth in confirmed cases can signal higher levels of COVID-19 community transmission.

An international research team led by the University of Hong Kong (HKU) developed a new method to accurately track the spread of COVID-19 using population flow data, and establishing a new risk assessment model to identify high-risk locales of COVID-19 at an early stage, which serves as a valuable toolkit to public health experts and policy makers in implementing infectious disease control during new outbreaks.  The study findings have been published in the journal Nature today (April 29).

Dr. Jayson Jia, Associate Professor of Marketing at the Faculty of Business and Economics of HKU and lead author of the study, and his co-authors used nation-wide data provided by a major national carrier in China to track population movement out of Wuhan between 1 January and 24 January 2020, a period covering the annual Chunyun mass migration before the Chinese Lunar New Year to a lockdown of the city to contain the virus. The movement of over 11 million people travelling through Wuhan to 296 prefectures in 31 provinces and regions in China were tracked.

Differing from usual epidemiological models that rely on historical data or assumptions, the team used real-time data about actual movements focusing on aggregate population flow rather than individual tracking. The data include any mobile phone user who had spent at least 2 hours in Wuhan during the study period.  Locations were detected once users had their phones on. As only aggregate data was used and no individual data was used, there was no threat to consumer privacy.

Combining the population flow data with the number and location of COVID-19 confirmed cases up to 19 February 2020 in China, Dr Jia’s team showed that the relative quantity of human movement from the disease epicentre, in this case, Wuhan, directly predicted the relative frequency and geographic distribution of the number of COVID-19 cases across China. The researchers found that their model can explain 96% of the distribution and intensity of the spread of COVID-19 across China statistically.

COVID-19 big data
Illustrative example of using model to track COVID-19 community spread risk. (copyright: Nature) Our model uses population movement to predict expected cases. The predicted spread of the SARS-CoV-2 virus can be used as a benchmark to identify which locales are ‘outliers’, which have significantly more or less cases than expected (given the movement data). The graph is an illustration of what our model showed on January 29. Prefectures to the left of the dashed line are outliers that have significantly more than expected cases, i.e., a higher level of unexplained or community transmission. Our model identified Wenzhou as having the most severe community transmission risk on January 29, 2020. The government announced a full quarantine of the prefecture on February 2, 2020.

The research team then used this empirical relationship to build a new risk detection toolkit. Leveraging on the population flow data, the researchers created an “expected growth pattern” based on the number of people arriving from the risk source, i.e. the disease epicentre. The team thereby developed a new risk model by contrasting expected growth of cases against the actual number of confirmed cases for each city in China, the difference being the “community transmission risk”.

“If there are more reported cases than the model expected, there is a higher risk of community spread. If there are fewer reported cases than the model expected, it means that the city’s preventive measures are particularly effective or it can indicate that further investigation by central authorities is needed to eliminate possible risks from inaccurate measurement,” explained Dr Jia.

“What is innovative about our approach is that we use misprediction to assess the level of community risk.  Our model accurately tells us how many cases we should expect given travel data.  We contrast this against the confirmed cases using the logic that what cannot be explained by imported cases and primary transmissions should be community spread. ” He added.

The approach is advantageous because it requires no assumptions or knowledge of how or why the virus spreads, is robust to data reporting inaccuracies, and only requires knowledge of relative distribution of human movement. It can be used by policy makers in any nation with available data to make rapid and accurate risk assessments and to plan allocation of limited resources ahead of ongoing disease outbreaks.

“Our research indicates that geographic flow of people outperforms other measures such as population size, wealth or distance from the risk source to indicate the gravity of an outbreak.” said Dr Jia.

Dr Jia is currently exploring with fellow researchers the feasibility of applying this toolkit to other countries, and extending it to situations where there are multiple COVID-19 epicentres. The team is working with other national telecom carriers and seeking additional data partners.



The study’s co-authors are Jianmin Jia, Presidential Chair Professor at the Chinese University of Hong Kong, Shenzhen (corresponding author); Nicholas A. Christakis, Sterling Professor of Social and Natural Science at Yale; Xin Lu, the National University of Defense Technology in Changsha, China, and the Karolinska Institutet in Stockholm, Sweden; Yun Yuan, Southwest Jiaotong University; Ge Xu, Hunan University of Technology and Business.

Press release from The University of Hong Kong.

Researchers from the Hubrecht Institute in Utrecht, Erasmus MC University Medical Center Rotterdam, and Maastricht University in the Netherlands have found that the coronavirus SARS-CoV-2, which causes COVID-19, can infect cells of the intestine and multiply there. Using state-of-the-art cell culture models of the human intestine, the researchers have successfully propagated the virus in vitro, and monitored the response of the cells to the virus, providing a new cell culture model for the study of COVID-19. These findings could explain the observation that approximately one third of COVID-19 patients experience gastrointestinal symptoms such as diarrhea, and the fact that the virus often can be detected in stool samples. The results of this study were published in the scientific journal Science on the 1st of May 2020.

Patients with COVID-19 show a variety of symptoms associated with respiratory organs – such as coughing, sneezing, shortness of breath, and fever – and the disease is transmitted via tiny droplets that are spread mainly through coughing and sneezing. One third of the patients however also have gastrointestinal symptoms, such as nausea and diarrhea. In addition, the virus can be detected in human stool long after the respiratory symptoms have been resolved. This suggests that the virus can also spread via so-called “fecal-oral transmission”.

Though the respiratory and gastrointestinal organs may seem very different, there are some key similarities. A particularly interesting similarity is the presence of the ACE2 receptor, the receptor through which the COVID-19 causing SARS-CoV-2 virus can enter the cells. The inside of the intestine is loaded with ACE2 receptors. However, until now it was unknown whether intestinal cells could actually get infected and produce virus particles.

Intestinal organoids

COVID-19 intestine
Intestinal organoid infected with coronavirus SARS-CoV-2. The coronavirus is colored white, the organoids themselves are colored blue and green. Credits: Joep Beumer, copyright: Hubrecht Institute

Researchers from the Hubrecht Institute, Erasmus MC and Maastricht University set out to determine whether the SARS-CoV-2 virus can directly infect the cells of the intestine, and if so, whether it can replicate there as well. They used human intestinal organoids: tiny versions of the human intestine that can be grown in the lab. Hans Clevers (Hubrecht Institute): “These organoids contain the cells of the human intestinal lining, making them a compelling model to investigate infection by SARS-CoV-2.”

Infection of intestinal cells

Illustration of a villus in the intestine with a zoom-in to an electron microscopy image of coronavirus SARS-CoV-2 (dark circles) at the edge of an intestinal cell. Credits: Credit: Kèvin Knoops, Raimond Ravelli and Maaike de Backer, copyright: Maastricht University

When the researchers added the virus to the organoids, they were rapidly infected. The virus enters a subset of the cells in the intestinal organoids, and the number of cells that are infected increases over time. Using electron microscopy, an advanced way to visualize different components of the cell in great detail, the researchers found virus particles inside and outside the cells of the organoids. Peter Peters (Maastricht University): “Due to the lockdown, we all studied virtual slides of the infected organoids remotely from home.”

COVID-19 intestine
Intestinal organoids, the right one infected with coronavirus SARS-CoV-2. The coronavirus is colored white, the organoids themselves are colored blue and green. Credits Joep Beumer, copyright Hubrecht Institute

The researchers investigated the response of the intestinal cells to the virus with RNA sequencing, a method to study which genes are active in the cells. This revealed that so-called interferon stimulated genes are activated. These genes are known to combat viral infection. Future work will focus on these genes more carefully, and on how they could be used to develop new treatments.

The researchers also cultured the organoids in different conditions that result in cells with higher and lower levels of the ACE2 receptor, through which SARS-CoV-2 can enter the cells. To their surprise, they found that the virus infected cells with both high and low levels of the ACE2 receptor. Ultimately, these studies may lead to new ways to block the entry of the virus into our cells.


Bart Haagmans (Erasmus MC): “The observations made in this study provide definite proof that SARS-CoV-2 can multiply in cells of the gastrointestinal tract. However, we don’t yet know whether SARS-CoV-2, present in the intestines of COVID-19 patients, plays a significant role in transmission. Our findings indicate that we should look into this possibility more closely.” The current study is in line with other recent studies that identified gastrointestinal symptoms in a large fraction of COVID-19 patients and virus in the stool of patients free of respiratory symptoms. Special attention may be needed for those patients with gastrointestinal symptoms. More extensive testing using not only nose and throat swabs, but also rectal swabs or stool samples may thus be needed.

In the meantime, the researchers are continuing their collaboration to learn more about COVID-19. They are studying the differences between infections in the lung and the intestine by comparing lung and intestinal organoids infected with SARS-CoV-2.



SARS-CoV-2 productively Infects Human Gut Enterocytes. Mart M. Lamers*, Joep Beumer*, Jelte van der Vaart*, Kèvin Knoops, Jens Puschhof, Tim I. Breugem, Raimond B.G. Ravelli, J. Paul van Schayck, Anna Z. Mykytyn, Hans Q. Duimel, Elly van Donselaar, Samra Riesebosch, Helma J.H. Kuijpers, Debby Schipper, Willine J. van de Wetering, Miranda de Graaf, Marion Koopmans, Edwin Cuppen, Peter J. Peters, Bart L. Haagmans† and Hans Clevers†. Science 2020. DOI * Equal contribution, † equal contribution.

This study was a collaboration between the Hubrecht Institute in Utrecht, the Erasmus MC University Medical Center Rotterdam, Maastricht University, the UMC Utrecht and Single Cell Discoveries in the Netherlands. The microscopy data are publicly available via the Image Data Resource (idr0083, – with help from the University of Dundee and the European Bioinformatics Institute) and the genomic data are publicly available via the Gene Expression Omnibus (GSE149312,, to ensure efficient sharing of data related to COVID-19 between researchers all across the world.

Plastic is a kind of widely used artificial material. The invention of plastic gives us a lightweight, strong and inexpensive material to use but also bring us the plastic apocalypse. Many of the unrecycled plastic waste ends up in the ocean, Earth’s last sink. Broken by waves, sunlight and marine animal, a single plastic bag can be broken down into 1.75 million microscopic fragments, which is called microplastics. Those microplastics might finally end up in our blood and system through the fish we eat or the water we drink.

During the long-term evolution of most plants on the earth, cellulose-based materials have been developed as their own structural support materials. Cellulose in plants mainly exists in the form of cellulose nanofibers (CNF), which have excellent mechanical and thermal properties. CNF, which can be derived from plant or produced by bacteria, is one of the most abundant all-green resources on Earth. CNF is an ideal nanoscale building block for constructing macroscopic high-performance materials, as it has higher strength (2 GPa) and modulus (138 GPa) than Kevlar and steel and lower thermal expansion coefficient (0.1 ppm K-1) than silica glass. Based on this bio-based and biodegradable building block, the construction of sustainable and high-performance structural materials will greatly promote the replacement of plastic and help us avoid the plastic apocalypse.

plastic substitute cellulose nanofiber plate
The cellulose nanofiber-derived bulk CNFP structural material and its characterization. (a) Photograph of large-sized CNFP with a volume of 320 × 220 × 27 mm3. (b) The robust 3D nanofiber network of CNFP. Numerous CNFs are intertwined with each other and combined together by hydrogen bonds. (c) Parts with different shapes of CNFP produced by a milling machine. (d) Ashby diagram of thermal expansion versus specific strength for CNFP compared with typical polymers, metals, and ceramics. (e) Ashby diagram of thermal expansion versus specific impact toughness for CNFP compared with typical polymers, metals, and ceramics. Copyright 2020, American Association for the Advancement of Science. Credit: Shu-Hong Yu

Nowadays, a team lead by Prof. Shu-Hong Yu from the University of Science and Technology of China (USTC) report a high-performance sustainable structural material called cellulose nanofiber plate (CNFP) (Fig. 1a and c) which is constructed from bio-based CNF (Fig. 1b) and ready to replace the plastic in many fields. This CNFP has high specific strength (~198 MPa/(Mg m-3)), which is 4 times higher than that of steel and higher than that of traditional plastic and aluminum alloy. In addition, CNFP has higher specific impact toughness (~67 kJ m-2/(Mg m-3)) than aluminum alloy and only half of its density (1.35 g cm-3).

Unlike plastic or other polymer based material, CNFP exhibit excellent resistance to extreme temperature and thermal shock. The thermal expansion coefficient of CNFP is lower than 5 ppm K-1 from -120 °C to 150 °C, which is close to ceramic materials, much lower than typical polymers and metals. Moreover, after 10 times of rapid thermal shock between 120 °C bake oven and -196 °C liquid nitrogen, CNFP remain its strength. Those result shows its outstanding thermal dimensional stability, which allow CNFP to own great potentials used as structural material under extreme temperature and alternate cooling and heating. Owing to its wide range of raw materials and bio-assisted synthesis process, CNFP is a kind of low-cost material with the cost of only 0.5 $/kg, which is lower than most of plastic. With low density, outstanding strength and toughness, and great thermal dimensional stability, all of those properties of CNFP surpass those of traditional metals, ceramics and polymers (Fig. 1d and e), making it a high-performance and environmental-friendly alternative for engineering requirement, especially for aerospace application.

CNFP not only has the power to replace plastic and saves us from drowning in them, but also has great potential as the next generation of sustainable and lightweight structural material.


Press release from the University of Science and Technology of China

Study shows immunotherapy prior to surgery may help destroy high-risk breast cancer


New Haven, Conn. — A new study led by Yale Cancer Center (YCC) researchers shows women with high-risk HER2-negative breast cancer treated before surgery with immunotherapy, plus a PARP inhibitor with chemotherapy, have a higher rate of complete eradication of cancer from the breast and lymph nodes compared to chemotherapy alone. The findings, part of the I-SPY clinical trial, were presented today at the American Association for Cancer Research (AACR) virtual annual meeting.

immunotherapy breast cancer
A new study led by Dr. Lajos Pusztai of Yale Cancer Center shows immunotherapy prior to surgery may help destroy high-risk breast cancer. Credit: Yale Cancer Center

“The results provide further evidence for the clinical value of immunotherapy in early stage breast cancer and suggest new avenues to use these drugs, particularly in estrogen receptor (ER)-positive/HER2-negative breast cancers,” said Lajos Pusztai, M.D., Professor of Medicine (Medical Oncology) and Director of Breast Cancer Translational Research at YCC. Pusztai presented the results of the study today during a plenary session at the AACR meeting.

Physicians treat some women with HER-2 negative breast cancer with chemotherapy before surgery, hoping to shrink the tumor and to guide treatment after the operation. In a subgroup of women, this pre-surgical treatment destroys any evidence of the tumor, achieving what is called “pathologic complete response” (pCR), a condition that typically heralds increased overall survival.

Investigators in the I-SPY 2 clinical trial now report that for women with HER2-negative breast cancer who are treated before surgery, an average pCR rate rises from 22% among those given standard-of-care chemotherapy to 37% in those who received the immunotherapy drug durvalumab, plus the PARP inhibitor drug olaparib, in addition to chemotherapy.

Durvalumab is a checkpoint inhibitor immunotherapy, engineered to unleash immune system T cells against tumors by inhibiting a protein on the surface of T cells called PD-1. PARP inhibitor drugs such as olaparib aim to the ability of impair cancer cells to repair DNA damage caused by chemotherapy.

Overall, 73 patients in the experimental arm were given durvalumab, olaparib, and paclitaxel chemotherapy followed by doxorubicin/cyclophosphamide chemotherapy, while 229 patients in the control arm received the standard treatment of paclitaxel plus doxorubicin/ cyclophosphamide. Researchers analyzed results for all HER2-negative patients, as well as for triple-negative (TNBC) and ER positive subsets. Women with triple negative cancer who received the combination treatment saw a pCR rate of 47%, compared to those given the standard chemotherapy with a pCR rate of 27%. Patients with estrogen-positive/HER2-negative cancer in the experimental arm experienced a pCR rate of 28%, versus 14% for those in the control arm. Patients in the experimental arm, however, were also more likely to experience grade 3 serious adverse events–58% in the experimental arm compared to 41% in the control arm.

Immune-rich cancers showed higher pCR rates in all subtypes and in both treatment arms, but the investigators discovered biomarkers that potentially could identify patients who are most likely to benefit from treatment with durvalumab and olaparib. Among estrogen-positive/HER2-negative cancers, the MammaPrint ultra-high subset benefited the most from the combination, their pCR rate reached 64%. In TNBC, tumors with low CD3/CD8 ratio, high Macrophage/Tcell-MHC class II ratio, and high proliferation appear to have benefited preferentially from adding durvalumab and olaparib to paclitaxel.

I-SPY (Investigation of Serial Studies to Predict Your Therapeutic Response with Imaging and Molecular Analysis) 2 is a multicenter phase 2 trial to evaluate novel agents as pre-surgical therapy for breast cancer. The study is a collaboration among 20 U.S. cancer research centers, the U.S. Food and Drug Administration and the Foundation for the National Institutes of Health Cancer Biomarkers Consortium. Lead support for I-SPY 2 came from the Quantum Leap Healthcare Collaborative.

Picture by StockSnap


About Yale Cancer Center and Smilow Cancer Hospital

Yale Cancer Center (YCC) is one of only 51 National Cancer Institute (NCI-designated comprehensive cancer) centers in the nation and the only such center in Connecticut. Cancer treatment for patients is available at Smilow Cancer Hospital through 13 multidisciplinary teams and at 15 Smilow Cancer Hospital Care Centers in Connecticut and Rhode Island. Smilow Cancer Hospital is accredited by the Commission on Cancer, a Quality program of the American College of Surgeons. Comprehensive cancer centers play a vital role in the advancement of the NCI’s goal of reducing morbidity and mortality from cancer through scientific research, cancer prevention, and innovative cancer treatment.


Press release from the Yale Cancer Center, Yale University