Ad
Ad
Ad
Astronomy

Webb captures iconic Horsehead Nebula in unprecedented detail

Pinterest LinkedIn Tumblr

Webb captures iconic Horsehead Nebula in unprecedented detail

 

The NASA/ESA/CSA James Webb Space Telescope has captured the sharpest infrared images to date of one of the most distinctive objects in our skies, the Horsehead Nebula. These observations show a part of the iconic nebula in a whole new light, capturing its complexity with unprecedented spatial resolution.

A collage of three images of the Horsehead Nebula. In the left image labelled “Euclid (Visible-Infrared)”, the Nebula is seen amongst its surroundings. A small box around it connects to the second image labelled “Hubble (Infrared)”, where the Nebula is zoomed in on. A portion of the Nebula’s head has another box, which leads with a callout to the third image, labelled “Webb (Infrared)”, of that area.
This image showcases three views of one of the most distinctive objects in our skies, the Horsehead Nebula. This object resides in part of the sky in the constellation Orion (The Hunter), in the western side of the Orion B molecular cloud. Rising from turbulent waves of dust and gas is the Horsehead Nebula, otherwise known as Barnard 33, which resides roughly 1300 light-years away.
The first image (left), released in November 2023, features the Horsehead Nebula as seen by ESA’s Euclid telescope. Euclid captured this image of the Horsehead in about one hour, which showcases the mission’s ability to very quickly image an unprecedented area of the sky in high detail.
The second image (middle) shows the NASA/ESA Hubble Space Telescope’s infrared view of the Horsehead Nebula, which was featured as the telescope’s 23rd anniversary image in 2013. This image captures plumes of gas in the infrared and reveals a beautiful, delicate structure that is normally obscured by dust.
The third image (right) features a new view of the Horsehead Nebula from the NASA/ESA/CSA James Webb Space Telescope’s NIRCam (Near-InfraRed Camera) instrument. It is the sharpest infrared image of the object to date, showing a part of the iconic nebula in a whole new light, and capturing its complexity with unprecedented spatial resolution.
Credit: ESA/Euclid/Euclid Consortium/NASA, image processing by J.-C. Cuillandre (CEA Paris-Saclay), G. Anselmi, NASA, ESA, and the Hubble Heritage Team (AURA/STScI), ESA/Webb, CSA, K. Misselt (University of Arizona) and A. Abergel (IAS/University Paris-Saclay, CNRS), M. Zamani (ESA/Webb)

Webb’s new images show part of the sky in the constellation Orion (The Hunter), in the western side of the Orion B molecular cloud. Rising from turbulent waves of dust and gas is the Horsehead Nebula, otherwise known as Barnard 33, which resides roughly 1300 light-years away.

The nebula formed from a collapsing interstellar cloud of material, and glows because it is illuminated by a nearby hot star. The gas clouds surrounding the Horsehead have already dissipated, but the jutting pillar is made of thick clumps of material that is harder to erode. Astronomers estimate that the Horsehead has about five million years left before it too disintegrates. Webb’s new view focuses on the illuminated edge of the top of the nebula’s distinctive dust and gas structure.

The Horsehead Nebula is a well-known photodissociation region, or PDR. In such a region ultraviolet light from young, massive stars creates a mostly neutral, warm area of gas and dust between the fully ionised gas surrounding the massive stars and the clouds in which they are born. This ultraviolet radiation strongly influences the gas chemistry of these regions and acts as the most important source of heat.

These regions occur where interstellar gas is dense enough to remain neutral, but not dense enough to prevent the penetration of far-ultraviolet light from massive stars. The light emitted from such PDRs provides a unique tool to study the physical and chemical processes that drive the evolution of interstellar matter in our galaxy, and throughout the Universe from the early era of vigorous star formation to the present day.

Owing to its proximity and its nearly edge-on geometry, the Horsehead Nebula is an ideal target for astronomers to study the physical structures of PDRs and the evolution of the chemical characteristics of the gas and dust within their respective environments, and the transition regions between them. It is considered one of the best objects in the sky to study how radiation interacts with interstellar matter.

At the bottom of the image a small portion of the Horsehead Nebula is seen close-in, as a curved wall of thick, smoky gas and dust. Above the nebula various distant stars and galaxies can be seen up to the top of the image. One star is very bright and large, with six long diffraction spikes that cross the image. The background fades from a dark red colour above the nebula to black.
The NASA/ESA/CSA James Webb Space Telescope has captured the sharpest infrared images to date of one of the most distinctive objects in our skies, the Horsehead Nebula. These observations show a part of the iconic nebula in a whole new light, capturing its complexity with unprecedented spatial resolution.
Webb’s new images show part of the sky in the constellation Orion (The Hunter), in the western side of the Orion B molecular cloud. Rising from turbulent waves of dust and gas is the Horsehead Nebula, otherwise known as Barnard 33, which resides roughly 1300 light-years away.
The nebula formed from a collapsing interstellar cloud of material, and glows because it is illuminated by a nearby hot star. The gas clouds surrounding the Horsehead have already dissipated, but the jutting pillar is made of thick clumps of material that is harder to erode. Astronomers estimate that the Horsehead has about five million years left before it too disintegrates. Webb’s new view focuses on the illuminated edge of the top of the nebula’s distinctive dust and gas structure.
The Horsehead Nebula is a well-known photon-dominated region, or PDR. In such a region ultraviolet light from young, massive stars creates a mostly neutral, warm area of gas and dust between the fully ionised gas surrounding the massive stars and the clouds in which they are born. This ultraviolet radiation strongly influences the gas chemistry of these regions and acts as the most important source of heat.
These regions occur where interstellar gas is dense enough to remain neutral, but not dense enough to prevent the penetration of far-ultraviolet light from massive stars. The light emitted from such PDRs provides a unique tool to study the physical and chemical processes that drive the evolution of interstellar matter in our galaxy, and throughout the Universe from the early era of vigorous star formation to the present day.
Owing to its proximity and its nearly edge-on geometry, the Horsehead Nebula is an ideal target for astronomers to study the physical structures of PDRs and the evolution of the chemical characteristics of the gas and dust within their respective environments, and the transition regions between them. It is considered one of the best objects in the sky to study how radiation interacts with interstellar matter.
This image was captured with Webb’s NIRCam (Near-InfraRed Camera) instrument.
Credit: ESA/Webb, NASA, CSA, K. Misselt (University of Arizona) and A. Abergel (IAS/University Paris-Saclay, CNRS)

Thanks to Webb’s MIRI and NIRCam instruments, an international team of astronomers have revealed for the first time the small-scale structures of the illuminated edge of the Horsehead. They have also detected a network of striated features extending perpendicular to the PDR front and containing dust particles and ionised gas entrained in the photo-evaporative flow of the nebula. The observations have also allowed astronomers to investigate the effects of dust attenuation and emission, and to better understand the multidimensional shape of the nebula.

The image is more than half-filled by a small section of the Horsehead Nebula, from the bottom up. The clouds are seen up close, showing thick, whitish streaks and dark voids, as well as textured, fuzzy-looking patterns of dust and gas. The nebula stops at a spiky edge that follows a slight curve. Above it a small number of distant stars and galaxies lie on a dark but multi-coloured background.
The NASA/ESA/CSA James Webb Space Telescope has captured the sharpest infrared images to date of one of the most distinctive objects in our skies, the Horsehead Nebula. These observations show a part of the iconic nebula in a whole new light, capturing its complexity with unprecedented spatial resolution.
Webb’s new images show part of the sky in the constellation Orion (The Hunter), in the western side of the Orion B molecular cloud. Rising from turbulent waves of dust and gas is the Horsehead Nebula, otherwise known as Barnard 33, which resides roughly 1300 light-years away.
The nebula formed from a collapsing interstellar cloud of material, and glows because it is illuminated by a nearby hot star. The gas clouds surrounding the Horsehead have already dissipated, but the jutting pillar is made of thick clumps of material that is harder to erode. Astronomers estimate that the Horsehead has about five million years left before it too disintegrates. Webb’s new view focuses on the illuminated edge of the top of the nebula’s distinctive dust and gas structure.
The Horsehead Nebula is a well-known photon-dominated region, or PDR. In such a region ultraviolet light from young, massive stars creates a mostly neutral, warm area of gas and dust between the fully ionised gas surrounding the massive stars and the clouds in which they are born. This ultraviolet radiation strongly influences the gas chemistry of these regions and acts as the most important source of heat.
These regions occur where interstellar gas is dense enough to remain neutral, but not dense enough to prevent the penetration of far-ultraviolet light from massive stars. The light emitted from such PDRs provides a unique tool to study the physical and chemical processes that drive the evolution of interstellar matter in our galaxy, and throughout the Universe from the early era of vigorous star formation to the present day.
Owing to its proximity and its nearly edge-on geometry, the Horsehead Nebula is an ideal target for astronomers to study the physical structures of PDRs and the evolution of the chemical characteristics of the gas and dust within their respective environments, and the transition regions between them. It is considered one of the best objects in the sky to study how radiation interacts with interstellar matter.
This image was captured with Webb’s MIRI (Mid-InfraRed Instrument).
Credit: ESA/Webb, NASA, CSA, K. Misselt (University of Arizona) and A. Abergel (IAS/University Paris-Saclay, CNRS)

Next, astronomers intend to study the spectroscopic data that have been obtained of the nebula to evidence the evolution of the physical and chemical properties of the material observed across the nebula.

These observations were taken in the Webb GTO programme #1192 (PI: K. Misselt) and the results have been accepted for publication in Astronomy & Astrophysics (Abergel et al. 2024).

 

Press release from ESA Webb.

ScientifiCult è una Testata Giornalistica registrata presso il Tribunale di Bari numero R.G. 5296/2021 - R.S. 21. Direttrice Responsabile: Alessandra Randazzo

Write A Comment