Ad
Ad
Ad
Astronomy

Galaxy mergers are the solution to the early Universe mystery concerning the Lyman-α emission

Pinterest LinkedIn Tumblr

Webb reveals that galaxy mergers are the solution to the early Universe mystery concerning the Lyman-α emission

One of the key missions of the NASA/ESA/CSA James Webb Space Telescope is to probe the early Universe. Now, the unmatched resolution and sensitivity of Webb’s NIRCam instrument have revealed, for the first time, what lies in the local environment of galaxies in the very early Universe. This has solved one of the most puzzling mysteries in astronomy — why astronomers detect light from hydrogen atoms which should have been entirely blocked by the pristine gas that formed after the Big-Bang. These new Webb observations have found small, faint objects surrounding the very galaxies that show the ‘inexplicable’ hydrogen emission. In conjunction with state-of-the-art simulations of galaxies in the early Universe, the observations have shown that the chaotic merging of these neighbouring galaxies is the source of this hydrogen emission.

A close-in view of three neighbouring galaxies. They appear as coloured blobs with bright, distinct cores. The image is mostly black, with a few unrelated galaxies visible nearby.
This image shows the galaxy EGSY8p7, a bright galaxy in the early Universe where light emission is seen from, among other things, excited hydrogen atoms — Lyman-α emission. Webb’s high sensitivity picks out this distant galaxy along with its two companion galaxies, where previous observations saw only one larger galaxy in its place.
This discovery of a cluster of interacting galaxies sheds light on the mystery of why the hydrogen emission from EGSY8p7, shrouded in neutral gas formed after the Big Bang, should be visible at all. Astronomers have concluded that the intense star-forming activity within these interacting galaxies energised hydrogen emission and cleared swathes of gas from their surroundings, allowing the unexpected hydrogen emission to escape.
This close-up view of EGSY8p7 has been newly processed, making use of NIRCam data captured with seven different near-infrared filters.
Credit: ESA/Webb, NASA & CSA, C. Witten, M. Zamani (ESA/Webb)

Light travels at a finite speed (300 000 kilometres per second), which means that the further away a galaxy is, the longer it has taken the light from it to reach our Solar System. As a result, not only do observations of the most distant galaxies probe the far reaches of the Universe, but they also allow us to study the Universe as it was in the past. In order to study the very early Universe, astronomers require exceptionally powerful telescopes that are capable of observing very distant — and therefore very faint — galaxies. One of Webb’s key capabilities is its ability to observe those very distant galaxies, and hence to probe the early history of the Universe. An international team of astronomers have put Webb’s amazing capacity to excellent use in solving a long-standing mystery in astronomy.

The very earliest galaxies were sites of vigorous and active star formation, and as such were rich sources of a type of light emitted by hydrogen atoms called Lyman-α emission [1]. However, during the epoch of reionisation [2] an immense amount of neutral hydrogen gas surrounded these areas of active star formation (also known as stellar nurseries). Furthermore, the space between galaxies was filled by more of this neutral gas than is the case today. The gas can very effectively absorb and scatter this kind of hydrogen emission [3], so astronomers have long predicted that the abundant Lyman-α emission released in the very early Universe should not be observable today. This theory has not always stood up to scrutiny, however, as examples of very early hydrogen emission have previously been observed by astronomers. This has presented a mystery: how is it that this hydrogen emission — that should have long since been absorbed or scattered — is being observed? Researcher at the University of Cambridge and principal investigator on the new study Callum Witten elaborates:

“One of the most puzzling issues that previous observations presented was the detection of light from hydrogen atoms in the very early Universe, which should have been entirely blocked by the pristine neutral gas that was formed after the Big-Bang. Many hypotheses have previously been suggested to explain the great escape of this ‘inexplicable’ emission.”

A graphic with three images. The top image, labelled “CEERS survey”, shows many square images of stars and galaxies, stitched together according to their locations in the sky. One square is highlighted, and a cutout on the bottom left shows it enlarged, labelled “Webb/ NIRCam”. A tiny spot is shown zoomed-in to the right, labelled “EGSY8p7” with a scale marker of “0.5 arcsec”. Here it can be seen that the spot is three neighbouring galaxies, appearing as coloured blobs with bright, distinct cores.
This image shows the galaxy EGSY8p7, a bright galaxy in the early Universe where light emission is seen from, among other things, excited hydrogen atoms — Lyman-α emission. The galaxy was identified in a field of young galaxies studied by Webb in the CEERS survey. In the bottom two panels, Webb’s high sensitivity picks out this distant galaxy along with its two companion galaxies, where previous observations saw only one larger galaxy in its place.
This discovery of a cluster of interacting galaxies sheds light on the mystery of why the hydrogen emission from EGSY8p7, shrouded in neutral gas formed after the Big Bang, should be visible at all. Astronomers have concluded that the intense star-forming activity within these interacting galaxies energised hydrogen emission and cleared swathes of gas from their surroundings, allowing the unexpected hydrogen emission to escape.
This graphic is assembled from multiple images captured by Webb’s NIRCam instrument as part of the CEERS survey. The close-up view of EGSY8p7 was newly processed for this image, making use of NIRCam data captured with seven different near-infrared filters.
Credit: ESA/Webb, NASA & CSA, S. Finkelstein (UT Austin), M. Bagley (UT Austin), R. Larson (UT Austin), A. Pagan (STScI), C. Witten, M. Zamani (ESA/Webb)

The team’s breakthrough came thanks to Webb’s extraordinary combination of angular resolution and sensitivity. The observations with Webb’s NIRCam instrument were able to resolve smaller, fainter galaxies that surround the bright galaxies from which the ‘inexplicable’ hydrogen emission had been detected. In other words, the surroundings of these galaxies appear to be a much busier place than we previously thought, filled with small, faint galaxies. Crucially, these smaller galaxies were interacting and merging with one another, and Webb has revealed that galaxy mergers play an important role in explaining the mystery emission from the earliest galaxies. Sergio Martin-Alvarez, team member from Stanford University, adds:

“Where Hubble was seeing only a large galaxy, Webb sees a cluster of smaller interacting galaxies, and this revelation has had a huge impact on our understanding of the unexpected hydrogen emission from some of the first galaxies.”

The team then used state-of-the-art computer simulations to explore the physical processes that might explain their results. They found that the rapid build-up of stellar mass through galaxy mergers both drove strong hydrogen emission and facilitated the escape of that radiation via channels cleared of the abundant neutral gas. So the high merger rate of the previously unobserved smaller galaxies presented a compelling solution to the long-standing puzzle of the ‘inexplicable’ early hydrogen emission.

The team are planning follow up observations with galaxies at various stages of merging, in order to continue to develop their understanding of how the hydrogen emission is ejected from these changing systems. Ultimately, this will enable them to improve our understanding of galaxy evolution.

These findings have been published today in Nature Astronomy.

Notes

[1] Lyman-α emission is light emitted at a wavelength of 121.567 nanometres when the electron in an excited hydrogen atom drops from an excited state in the n = 2 orbital down to its ground state n = 1 (the lowest energy state the atom can have). Quantum physics dictates that electrons can only exist in very specific energy states, and this means that certain energy transitions — such as when the electron in a hydrogen atom drops from orbital n = 2 to n = 1 — can be identified by the wavelength of the light emitted during that transition. Lyman-α emission is important in many branches of astronomy, partly because hydrogen is so abundant in the Universe, and also because hydrogen is typically excited by energetic processes such as ongoing active star formation. Accordingly, Lyman-α emission can be used as a sign that active star formation is taking place.

[2] The epoch of reionisation was a very early stage in the Universe’s history that took place after recombination (the first stage following the Big Bang). During recombination, the Universe cooled enough that electrons and protons began to combine to form neutral hydrogen atoms. During reionisation, denser clouds of gas started to form, creating stars and eventually entire galaxies whose light gradually reionised the hydrogen gas..

[3] Neutral hydrogen gas is made of hydrogen atoms that are in the lowest energy state they can be, each with their electron in orbital n = 1. Since the light emitted by a hydrogen atom during Lyman-α emission carries the energy of the atomic transition from orbital n = 2 down to n = 1, when it strikes a neutral hydrogen atom, it has exactly the right amount of energy to ionise the atom and take its electron up to the next available orbital. This means the neutral gas absorbs and blocks Lyman-α emission very easily.

 

 

Press release from ESA Webb.

ScientifiCult è una Testata Giornalistica registrata presso il Tribunale di Bari numero R.G. 5296/2021 - R.S. 21. Direttrice Responsabile: Alessandra Randazzo

Write A Comment